ED 383 212

AUTHOR
TITLE

INSTITUTION
REPORT NO

PUB DATE

NOTE

AVAILABLE FROM
PUB TYPE

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

ABSTRACT

DOCUMENT RESUME

FL 023 018

Hart, Robert S.

Improved Algorithms for Identifying Spelling and Word
Order Errors in Student Responses.

Illinois Univ., Urbana. Language Learning Lab.
LLL-T-22-94

Dec 94

80p.

Language Learning Laboratory, University of Illinois
at Urbana—-Champaign, G70 Foreign lLanguages Building,
707 S. Mathews St., Urbana, IL 61801l.

Guides — Non—-Classroom Use (055)

MF01/PCO4 Plus Postage.

*Algorithms; *Authoring Aids (Programming)
Capitalization (Alphabetic); Comparative Analysis;
*Computer Assisted Instruction; Diacritical Marking;
*Error Analysis (Language); Grammatical
Acceptability; Hypermedia; Programming; *Sentence
Structure; *Spelling

*Word Order

The report describes improved algorithms within a

computer program for identifying spelling and word order errors in
student responses. A "markup analysis' compares a student's response
string to an author-specified model string and generates a graphical
error markup that indicates spelling, capitalization, and accent

errors,

extra or missing words,
determines whether the response was acceptable or not,

and out-of-order words. The algorithm
and computes a

string of graphical error marks to be displayed below the student
response. Synonyms and ignorable words can be specified and spelling

errors,

extra words, and word order errors can be acceplted at the

author's discretion. Spelling analysis is done using a dynamic
programming algorithm that produces a least-cost edit trace; word
order analysis is implemented using recursive branch and bound
search. Improvements on earlier versions of the algorithm give more
intuitive markup values. The algorithm is implemented as a HyperTalk
XFCN. HyperTalk scripts can provide numerous input parameters that

control the details of the matching process,

and the algorithm

returns a variety of fit measurements that characterize the match.
Non—-roman linear writing scripts are supported. The report contains
detailed information on use of the function and serves as a user

manual .

Contains two references.

(Author/MSE)

RO

ste Yo sle v v 5% 3% vo 3% 36 Y e 3 e e de ve ok e de o e vt dele 3 e o e gk de o' o veot dledle e dle vle e ot vl ot o ol o g S e e vle vl vl e e e sl de S e e e de de vk okt e vk

¥ Reproductions supplied by EDRS are the best that can be made

b

from the original document.

.................

%

¥

~ Language Learnipd Laboratory
~.College of Liberal Arts and Sciences

#

Technical Report No. LLL-T-22-94 University of lllinois
December 1994

- at Urbana-Champaign

IMPRCOVED ALGORITHMS FOR IDENTIFYING
SPELLING AND WORD ORDER ERRORS IN STUDENT RESPONSES

Robert S. Hart

A

U.0. DEPARTRENT OF EDUCATION
Oftica of Educational Research snd imarovement
“PERMISSION TO REPRODUCE THIS X EDUCA“ONMC‘EENSTOEg?ECE%IINFORWT.ON
MATERIAL HAS BEEN GRANTED BY - This document has been reproducad as
- tecoivad {rom the person of orgamizaton
. onginating it
AC_.C‘-_Q&:ene_ B S rave baen made 1o mprove
: raproduchon qusity
- . 8 Points of view Of ODINIONS SI818d 1N thiS GO
ment do not necesssariy represent othcial

OERi postion or pokcy
TO THE EDUCATIONAL RESOURCES

INFORMATION CENTER (ERIC)."

|

Technicali Report No. LLL-T-22-94
December 1994

IMPROVED ALGORITHMS FOR IDENTIFYING
SPELLING AND WORD ORDER ERRORS IN STUDENT RESPONSES

Robert S. Hart

g
g
g
i
i
i
6
B?
E
|
B
¢
i
|
B
B
i
i

ABSTRACT

This report describes improved algorithms for identifying speiling and word order errors in student
responses. A markup analysis compares a student’s response string 10 an author specified model
string and generates a graphical error markup that indicates spetling, capitalization and accent
errors, extra or missing words, and out-of-order words. The algorithm determines whether the
response was acceptable or not, and computes a string of graphical error marks which can be
displayed below the students response as error feedback. Synonyms and ignorable words can be
specified within the model, and spelling error, extra words and word order errors can be accepted at
the author's discresion. Spelling analysis is done using a dynamic programming alogorithm which
produces a least-cost edit trace; word order analysis is implemented using recursive branch and
bound search, Improvements on earlier versions of the algorithm give a more intuitive markup
values. The algoritm is implemented as a HyperTalk XFCN. HyperTalk scripts can provide
numerous input parameters that control the details of the matching process, and the algorithm
retums a variety of fit measurements that characterize the match. Non-roman linear writing
systems are supported. The report contains detailed information on use of the function and serves
as a user manual.

KEYWORDS: software tools, HyperCard, HyperTalk, XCMD, XFCN, CAl, CALL, response

analysis, error diagnosis, response judging, markup, matching, error feedback, spelling, word order,
foreign language

mimmmmammm

LANGUAGE L. EARNING LABORATORY
Coliege of Liberal Ants and Sciences
University of Illinois at Urbana-Champaign

Technical Report No. LLL-T-22-94

IMPROVED ALGORITHMS FOR IDENTIFYING
SPELLING AND WORD ORDER ERRORS IN STUDENT
RESPONSES

Robert S. Hart

Associate Director, Larguage Leaming Laboratory
Assistant Professor of Humanities

September 1993

Available from: Language Learning Laboratory, University of Illinois at Urbana-Champaign, G70 Forcign
Languages Brilding, 707 S. Maihews St, Urbana, IL 61801 (217)-333-9776

TABLE OF CONTENTS

TABLE OF CONTENTScocovveiininiie s
INTRODUCTION ...
CORRECTIONS IN VERSION 2.0 OF THE MARKUP ALGORITHM
USE OF CHARACTER CATEGORY INFORMATION FOR SPELLING ANALYSIS

USING THE MARKUP XFCN...........ccoeeeees

ADDITIONAL PARAMETERS CONTROLLING THE MARKUP PROCESS
CHANGING THE CHARACTER INFORMATION TABLES

INFORMATION RETURNED BY MARKUP..

EXAMPLE 7. USING THE EXACT SPELLING MARKUP
TECHNICAL DETAILS AND LIMITATIONS

AVAILABILITY e,

..

..

...

..

..

..

..

..

..

INTRODUC.ION

The program described in this report implements improved versions of the algorithms for analyzing and
marking word order errors in student responses first described in Hart (1988). Several minor difficulties in
the previous version have been corrected, a number of new features have been added, and the whole utility
has been reimplemented as a HyperCard XT'CN (external function) to make it is available in a Macintosh
environment.

The basic functionality of the Markup XFCN is to accept a model string (in educational applications,
usually a "correct answer” specified by the courseware author), a response typed in by the student, and
generate a graphic markup that indicates where the response is incorrect. Here is an example:

Model: The very cuick brown fox jumped over the big lazy dog
Response: thevery gqick pronw foxx oar the lazy big ddg.
Markup: - 1 \ = >< xAXXX A « ~ (1)

The markup symbols displayed beneath the (incorrect) response indicate the editorial changes needed to make
the response match the model. The symbol "\" indicates one or more omitted letters; "x" an extra letter,
and "=" an incorrectly substituted letter. The symbol pair "><" indicates transposition of two letters; "X"
means an extra word (one that should not be in the response, or else one that is so badly misspelied that it
can't be recognized); "A" indicates that one or more words is missing at that point in the response; and "«
means that the word is part of the response, but in the wrong position -- it should be moved leftward to one
of the "A" symbols. Incorrect capitalization is symbolized by " " and an accent error by "~".

Spelling analysis is done by a dynamic programming algorithm which generates a markup corresponding
to a least-cost editing trace. Editing operations are restricted to omission of a letter, insertion of an extra
letter, substitution of one letter for another, or transposition of two adjacent letters. Capitalization and
accent errors are also identified and marked. The user may specify the way in which capitalization
disagreements will be treated: exact agreement required, upper case required wherever the model has
uppercase, or case differences ignored. Rua-together words are identified as such if they are adjacent in the
model. Some misspelling is tolerated in one or both run-togethers.

Order analysis identifies extra words, missing words, and misplaced words, The user can specify various
degrees of tolerance when d2fining what constitutes a match with the model: spelling errors can be excused;
incorrect word order can be excused, and extra words in the response can be excused. The order analysis
retums three goodness of fit measures: proportion of matched words, proportion of words in correct order,
and average amount of misspelling per matched word.

When specifying the model, the author is allowed to specify one or more words which will be ignored if
they occur in the student's response. Such a word or list must be surrounded by angle brackets, <>. A list
of "synonyms" (i. 2., a set of words any one of which would be correct at a given position in a sentence)
must be surrounded by square brackets, [1.

The basic theory underlyir.g the word order and spelling analysis and markup, which was presented in Hart
(1989), has not changed and the reader should consult that document for a detailed exposition of the
approach used. This report is restricted to two goals: (a) describing the changes in the algorithms made in
version 2.0, and (b) giving a detailed account of the HyperCard interface so that lesson developers can casily
incorporate the markup facility into HyperCard stacks. Appendix 1, however, does present a complete
listing of this version of the MarkUp XFCN.

=1

CORRECTIONS IN VERSION 2.0 OF THE MARKUP ALGORITHM

In certain cases, version 1.0 of the MarkUp algorithm returned a markup string which, though technically
correct, was counter-intuitive. Once example is:

Model: He llives in Chicago
Response: He lives in in Chicago.
Markup: ~ XX)]

Here, it would agree better with common sense if the mis-accented "fn" were marked as the extra word rather
than the adjacent, and perfectly correct, "in";

Response: He lives in in Chicago.
Better Markup: XX 3)

The reason for the poor markup in (2) is simple. In determining the edit distance between pairs of words,
version 1.0 of the MarkUp XFCN simply ignored any capitalization or accent errors. Word similarity was
determined without any reference to these matters, and since spelling and word order analysis built on
similarity information, they aiso ignored such errors. Only at the very end, when displaying the graphic
markup did the algorithm check for such problems. Thus, as far as the word order routine is concerned,
these two responses are identical:

Responsel: He lives in Chicago (4a)
Response2: He lives in Chicago 4b)

In cases like (2), where there are redundant identical words, the MarkUp XFCN always uses the leftmost
possibility.

The fix for this problem was straightforward. Two new weight parameters have been introduced into the
program, wcap (the weight of a capitalization error) and waccent (the weight of an accent error). Since
capitalization and accent errors are normally perceived as relatively minor problems, we do not want them to
have much influence on edit distance, so their default values have been made much smaller than the
remaining weights. The current default weights are:

wdelete 20
winsert 2 20
wsubstitute 30
wtranspose 20
wcap 1
waccent 1 ©)]

This means that "fn’ and "in" are now at an edit distance of 1 from one another, rather than 0 as previously.
Note also that the "average" distance associated with a single edit operation is now

((wdelete + winsert + wsubstitute + wtranspose)/4) + ((wcap + waccent)/2) ®)

This is appropriate because deiction, insertion, substitution, and transposition are mutually exclusive
operations, but a cap or accent error may or may not accompany a substitution.

A related situation where version 1.0 of the MarkUp XFCN fails to perform satisfactorily is illustrated in
this example:

~

|I

Model: the time
Response: then the time.
Markup: X XXX ™M

Here the problem is not due to accents or capitalization errors, but to the way that response words were
paired with model words. When considering candidates for pairings, the procedure ignored the exact
magnitude of edit distance between word pairs. Instead, a cutoff criterion was used. [f the edit distance
exceeded the cutoff value, the pair were considered as a potential match; otherwise, they were considered to
be distinct words which could not be paired under any circumstances. Thus, in (7) the response words
"then” and "the" are considered to be equally good maiches for the model word "the”, and "then” is selected
because it happens to be leftmost, even though this entails a spelling error.

A third case of inappropriate markup is

Model: seen on a boat in Chicago
Response: seen in a boat in Chicago
Markup: A «« XX ®

In this case the first "A" marks the location of the missing words "on a boat”, consequently "on" must be
inserted at the location of the "A", and the words "a boat" are marked with “«" to show that them must be
moved leftward from their current location to the Iocation of the "A". This will ieave the word "in" (the one
which has not been marked as extra) adjacent to "Chicago”, to make up the phrase "in Chicago”. The
second "in" is unneeded and is marked as extra. While technically correct, this markup is unintuitive and, if
fact, very confusing. Most readers would agree that the student simply substituted "in" for “on" in her
response, so the appropriate markup would be

Response: seen in a boat in Chicago
Markup: XX)

The strange markup in (8) occurs because of the way the word order analysis operated in version 1.0.
Matching proceeded in two steps. First response words were paired with candidate model words in such a
way that the number of inversions is minimized; that is, the criterion for doing the matching is to keep the
order of words in the response as close as possible to their order in the model. In (8), the candidates were

Response word: 1 2 3 4 5 6

Model word candidates: 1 5 3 4 5 6 (10)

Notice that model word 5, "in", is the only available candidate for pairing with response word 2 and also
response word 5, both of which are "in". (Model word 2, "on", is not a candidate for pairing with anything
because its normalized edit distance from every response word exceeds the cutoff threshold.) In the initial
phase of matching, response words are paired one at a time, proceeding from left to right, When response
position 2 is considered, the only available candidate is model word 5. A response word is not allowed to
remain unpaired if there is any candidate that will match it, so the pairing (2, 5) will be created. This
means that when we reach response word S, there is nothing left to pair it with, so it is tagged as an exira
word,

To remedy such problems, the word order analysis had a second stage, embodied in the
adjust_solution procedure, which attempted to improve the quality of the match by laking into
account the actual magnitude of edit distance. This procedure looked at certain pairs of matches to see if
exchanging the match between pairs would reduce the overall edit distance without increasing the number of
inversions. However, attention was restricted to unmatched response words (namely, those matched with
the "null” model word), and the algorithm merely checked to see if the overall maich could be improved by
taking a mode! word away from some other response word and pairing it with a currently unmatched one.
The algorithm was roughly as follows, where M, M' denote words in the model ; R, R’, words in the
response, and R <-> M indicates a pairing of R with M:

o

FOR each matched response word R DO
FOR each unmatiched response word R’ to the right of R DO
BEGIN
M := the word paired with R;
IF edit distance of (M, R") is less than the edit distance of (M, R) AND
(pairing M with R’ leads to no more inversions than pairing M with R)
THEN

BEGIN
Re-pair M with R';
Re-pair null with R
END
END an

Although this adjustment cleared up many deficiencies in the match, it was not sufficient in general and
still allowed markups like (8). To eliminate these shortcomings, version 2.0 of the adjust_solution
algorithm has been completely rewritten and made much more general. Now all possible pairs of matches,
R <-> M and R’ <-> M', are considered, and if exchanging the pairing so that R <-> M' and R' <-> M
results in a lesser overall edit distance without increasing the number of inversions, or decreases the
inversion count without increasing the edit distance, then the solution is modified to incorporate the
exchanged match, essentially as indicated in the following algorithm:

FOR each response word R DO
FOR each response word R DO
BEGIN
M := the model word matched with R;
M' := the model word matched with R";
OldEditD := edit disiance of (M, R) + edit distance of (M', R');
newEditD := edit distance of (M, R') + edit distance of (M', R);
oldInvK := number of inversions in original solution;
newinvK := number of inversion when R <-> M'and R' <-> M;
IF (newEdit D < oldEdit D AND new InvK <= oldinvK) OR
(newEditD = oldEditD AND newinvK < oldInvK) THEN
BEGIN
Re-pair R with M";
Re-pair R' with M
END
END (12)

The revised algorithrn considers many more potential exchanges, and thus improves the overall match in
situations where the earlier version failed to do so.

A complete listing of version 2.0 of the MarkUp XFCN, including the adjust_solution procedure,
appears in Appendix 1.

USE OF CHARACTER CATEGORY INFORMATION FOR SPELLING ANALYSIS

Version 1.0 of the MarkUp XFCN specified the phonetic category of each character (whether it was a vowel
or consonant), and allowed the user to modify such information, but made no use of it. In version 2.0,
phonetic information is utilized during the process of spelling analysis to achieve a more psychologically
meaningful measure of edit distance.

The problem is the weight which should be attached to a substitution error, that is, an error which results
because some character M in a mode] word has been replaced by a different character R in the student's

Lij

defaults to 30) regardless of the actual identities of M and R. Consequently, "readable" has the samc edit
distance from "readible” and "reidable” as it does from "readxble", "rezdible”, "oedable", and "readaule”.
Intuitively, however, the latter substitutions are less likely to occur, at least for students who are careful
typists but poor spellers -- a description which applies, for example, to many student language leamers.
The reason is that spelling errors usually involve substituting one vowel for another or one consonant for
another, but only rarely a consonant for a vowel or visa versa. Of course typing eirors, being a function of
keyboard position and n-gram frequency (Rumeclhart & Norman, 1982), do not necessarily show this
pattern. We need a way of assigning differential substitution costs to different pairs of character categories.

ﬁ response. Version 1.0 assigned the same weight (namely, the value of the variable wchange hich

The problem of determining accurate substitution probabililties for character pairs (or character category
ﬁ pairs) can be solved only by some combination of empirical data and psychological modelling. However,

there are situations where even rough estimates will be useful. Consider the case of Japanese writing,

which utilizes three basic categories of character: katakana, hirigana, and kanji. In the computer

representations now becoming standard, all of these characters are represented as 32-bit character codes, and
I MarkUp will treat each as if it were a single character. But this psychologically inaccurate. Since the
hiragana character represent CV syllables, a beginner will be relatively likely to confuse them with one
another. The substitution of a hiragana character for a kanji within a word should be a relatively rare event,
and thus have a high edit distance attached to it. Kanji do have internal structure, and thus might be
substituted, one for another,. with one another with varying degrees of probability. However, the character
code of a Kanji does not reveal its internal structure sufficiently so that MarkUp can determine similarity.
Thus, the cost of every kanji-kanji substitution must be the same. In fact, to prevent every word in the
model from being identified with every word in the response, such substitutions must be forbidden (infinite
cost). We thus need at least two categories of character, hirigana and kanji. Hirigana-hirigana substitution
will be permitted at a moderate cost, but kanj-kanji and kanji-hirigana substitution wili be excluded. (This
ﬁ example is theoretical, because version 2.0 of MarkUp does not support 32-bit characters.)

Version 2.0 of MarkUp supports the assignment of differential substitution costs by providing five different

. "phonetic" categories. Actually, a better term would be character categories, because they need not actually
concern phonetic properties of the character, and because the categories are mutually exclusive and
exhaustive -- each character must belong to exactly one category. The categories have the hard-coded names

vowel, consonant, phon3, phon4, phon5

These labels are purely conventional however; the lesson author can redefine the categories in any way she
wishes. The default phonetic information assigns a, ¢, i, 0, u, and y to the "vowel" catcgory and all other

characters to the "consonant™ category; as a result, the three remaining categories "phon3”, "phon4" and
"phonS" are not used at all.

To make use of these categories, a Sx5 matrix of weights called phon_matrix is created and intialized with

these default values:

Response Char Category
Model = meeeee e e e e e e e e
Char vowel consonant phon3 phond phon5
Category
vowel 30 36 36 36 306
consonant 36 30 36 36 36
phon3 30 36 36 36 36
phond 30 36 - 36 36 36
phoné 30 36 36 36 36

Each row M corresponds to a possible category of the model character, and each column R 10 a possible
category of a response character. The cell phon_matrix[M, R] gives the cost of replacing a model character
E of category M by a response character of category R. For instance phon_matrix[vowcl, consonant] is 36,

s
pn

the cost of subsitating a consonant for a vowel. Given the default partition of characters between vowel and
consonant, the matrix entries indexed by phon3, phond, and phon$ are redundant, because they will never be
referred to during the analysis,

The default weights are assigned according to the following rule: intra-category substitutions (vowel-vowel,
consonant-consonant, and other cells along the diagonal) are assigned the value of the parameter wchange,
which has a the default value 30. Inter-category substitutions (off-diagonal cells) are assigned the valuc
(1.2*wchange) = 36. The factor 1.2 is arbitrary, but was chosen so that vowel-consonant substitutions
would be more expensive than vowel-vowel or consonant-consonant, and yet not so expensive that they
would prevent words containing typos from being identified as potential matches. The user can modify
both character category assignments and the phon_matrix values, as explained below.

USING THE MARKUP XFCN

The MarkUp XFCN is implemented as a Macintosh code resource, so it must be made available to your
stack before you use it. This can be done in several ways: (1) copy it directiy into the stack resource fork
with the RESCOPY or RESEDIT utilities; (2) copy it into your HOME stack resuorce fork using the same
utilities; or (3) execute a START USING STACK command to attach a siack which already contains the
MarkUp XFCN as a resource. Copying directly to your own stack is more stable, but also wasteful of
space if copies proliferate.

Once the MarkUp XFCN has becn made available, it can be called like any other HyperCard function. It
enables you to produce a graphic error markup in a HyperCard stack. When you call MarkUP, you must
input a model string and a response string. MarkUp will match the two and return a markup string, as well
as other information about the quality of the match. You can then display this information to the student,
or use it in any other way you chose.

As one step in generating the graphical error markup, the MarkUp XFCN judges the response ((i. .,
evaluates it for correctness). You can control the amount and nature of error tolerance during this judging
process by changing the values of various input parameters to MarkUp. To be specific, you can specify
synonyms for various words in the response. You can specify words which should be ignored if they occur
in the response. And you can stipulate that the response will be judged correct even if it contains spelling
errors, or word order errors, or extra words.

Evaluating and marking up a user's response is a complex activity which can be modified in various ways
to reflect various kinds of content and instructional needs. You can control the way in which MarkUp
operates by setting input parameters. Thirteen of these parameters can be sct by passing values directly to
the MarkUp XFCN wilen it is called. More esoteric aspects of operation can be controlled by putting
suitable values into five global HyperCard variables: theMarkUpWeights, theMarkUpSymbols,
theMarkUpCharInfo and theMarkUpDebug.

The direct return of the Markup XFCN is a markup string. This is simply a sequence of symbols in
character string format, like that in (1), which indicates the nature of the mismatches between the model and
the student's response. Additional information may be returned in the four HyperCard global variables
theMarkUpReturnValues, theMarkUpMaps, theMarkUpParambisplay, and
theMarkUpDebug.

iz

v

CALLING THE MARKUP XFCN

The syntax for calling the MarkUp XFCN allows for up to 14 input parameters, however 12 of these are
optional and need not be specified except in special situations. The general form of a MarkUp function call
is

markUp{ model,
response,
capFlag,
extraWordsOk,
anyOrderQk,
misspellQk,
wordMarkUpNeeded,
runToget herNeeded,
adjustNeeded,
shortCut,
markUpMapsNeeded,
parameterDisplayNeeded
spellingOnlyNeeded
debugNeeded) (13

The meaning of each of the thirteen input parameter slots, and the range of values acceptable in that slot, is
as follows:

model String or container specifying the correct response.
response String or container holding the student's response.
capFlag If "exact_case™ (the default) then the capitalization in the

response must exactly match that in the model or else cap
errors will be marked. If "authors_caps", the response
must have a capital whenever the model does, but additional
capitals in the response are permitted. If "ignore_case"
then case is ignored when matching model and response.

extraWordsOk If True, judge OK even if extra words are present in the
response. If False (the default) judge NO if extra words are
present.

anyOrderOk If True, order of words in the response does not have to

match the order of words in the model in order to get an OK
judgment. If False (the default), judge NO if words are not
in the specified order.

misspellOk If True, judge OK even if some words are misspelled. If
False (the default), judge NO if there is any spelling error.

wordMarkUpNeeded If True, an error markup string will be generated and returned.
if False (the defauit), no string (i. e., a null string) will be
returned, only a judgment of OK or NO. If you simply wish
an evaluation and don't want to display the graphic markup as
error feedback, you can speed things up slightly by setting this
parameter to False. In that case, your script can use the other
information returned by MarkUp to determine what feedback to
give the student.

runtogetherNeeded If True (the default), MarkUp will find and mark run-together

words. If False, run-togethers will not be identified as such,
but will be marked as misspelled or unidentified words.

1d

adjustMNeeded

shortCut

markUpMapsNeeded

paramelerDisplayNeeded

Turning off this feature when MarkUp is running slowly will
speed things up, but at the cost of degrading the quality of the
markup.

If True (the default), MarkUp will try to "improve” the
graphical error markup to make it more intuitive. If False,
this improvement is not done. Do not tum off improvement
unless speed is a serious problem, because it significantly
degrades the quality of the MarkUp

If True (the default), MarkUp will do a "fast" spelling
analysis that will not generate a spelling markup between
badly misspelled pairs. If False, force a complete spelling
analysis for every word. Use False if you need a markup for
very badly misspelled words (e. g., when using MarkUp in a
spelling lesson). Turning off shortCut may slow the program
down significantly when model and/or response are long.

If True, MarkUp will generate and return in the HyperCard
global variable theMarkUpMaps two "maps” showing
which model words are paired with which response words. If
False (the default), this map will not be returned, and the
value of theMarkUpMaps remains unchanged.

One of lhe Chamcters "V", "b" . L1} d", "C " , " h", np n' Hig " s
g, mgv or "m" or else nothing at all (the default). If one
if these characters is present, then information of the requesied
type will be returned in the HyperCard global variable
theMarkUpParambisplay. Otherwise the value of
theMarkUpParamDisplay remains unchanged. The
character that you use as an input parameter determines the
kind of information that will be returned:

g VERSION of the MarkUp XFCN which is running
"b* Table of BASE CHARACTER specifications

"d* Table of DIACRITIC specifications

n"cv Table of CASE specifications

*n" Table of PHONETIC CATEGORY specifications

"p" Table of PUNCTUATION CHARACTER
specifications

LAl Values of the JUDGING WEIGHTS AND
THRESHOLDS

"f" Values of the JUDGING FLAGS

ng* Values of the MARKUP SYMBOLS

" Values in the PHON_MATRIX

This parameter allows you to copy a judging table into a

HyperCard container, where it can be inspected using the
SHOW VARIABLES option of the HyperCard debugger. The

14

f < - u n n
PRI Lo

format in which this information is returned is discussed
below.

spellingOnlyNeeded If no value or "x" (the defauit), then the standard spelling and
word order analysis is done. If the valueis "x" or "p", a
special, spelling-only analysis will be done: the Model and
Response strings will be immediately submitted verbatim to
the spelling analyzer and an edit trace will be generated by
compairing every character in the two strings, including
punctuation, spaces, and return characters. None of the special
syntax used to define synonym and ignorable word lists in the
model will be recognized. Since there are no word boundaries,
no order analysis will be done. The wvalue of
spellingOnlyNeeded determines the nature of the return;

"p® Return a "pretty” markup string, suitable for display
beneath the response string.

"r" Return the raw markup string, without prettying it
up.

"x™ Do not do the special spelling-only analysis; do the
’ normal spelling and word order analysis.

Since the Model and Response strings are treated as if they
were words when spellingOnlyNeeded is "x" or "p" neither
string can exceed the maximum word length of 20 characters.

The information returned in the HyperCard global variable
theMarkUpReturnvalues are different for the special
analysis, and consists of a raw edit distance and a normalized
edit distance.

Retuming a raw trace forces a least-cost edit trace string
(markup string) to be computed no matter how dissimilar the
Model and Response are, so this option is useful for spelling
lessons or other cases where an exact spelling markup is
needed even when a response is badly misspelled. Only the
"presty” markup will display properly, but it has incomplete
, information about the nature of errors present, so the "™
option is appropriate if you want to do computations on the
markup string.

debugNeeded Setting this parameter to "True” cause technical information
about the internal workings of MarkUp to be returned in the
HyperCard global theMarkUpDebug. Included are the edit
distance matrix, values of ignorable words in the model and
response, and candidate match sets for each response word.
This information is intended only for debugging and
development purposes. If False (the default), no information
is returned.

The Response and Model strings must be specified when you call the MarkUp XFCN. The remaining 12

parameters are optional. If you are satisfied with the default value of a parameter, simply leave that siot
empty (of course, a comma must be present to mark the location of the unused slot if other parameter

E values follow). If the unused parameters are dangling (i. e., come after the last real parameter value), the
commas may also be omitted, following the usual HyperCard convention for input parameters.

values follow). If the unused parameters are dangling (i. e., come after the last real parameter value), the
commas may also be omitted, following the usual HyperCard convention for input parameters.

IMPORTANT: Each of the 14 input parameters reverts to the default value after each call to MarkUp, so
non-default values must be respecified each time you call MarkUp.

HyperCard evaluates each parameter before sending it to the MarkUp XFCN, so parameters may be specified
by any HyperCard expression, including constants, variables, chunk specifiers, or field specifiers.

SPECIFYING THE MODEL AND RESPONSE PARMETERS

The simplest form of correct answer is a single word or string of words:
The quick brown fox jumped over the lazy dog. (14)

The model should not contain any characters which are currently defined as punctuation marks, because such
characters are removed from the student's response string before it is judged. If such characters appear in the
model string, it will be impaossible for the response to match the model.

The square brackets "{] and the angle brackets "< >" have special uses in the model string. Square
brackets are used to specify a list of (one or more) synonymous words. The words must be separted by one
or more spaces; ther punctuation is not acceptable. The words do not have to be synonyms in the usual
sense; in fact any collection of words can be put into a synonym list. Such a list simply specifies that any
member of the list will be acceptable at that point in the model, as in

The [quick fast speedy| brown focx jumped over the {lazy stupidl dog 15

Any word in the list will be acceptable at that position in the response. Thus the model shown will result
in the following markups

Response: The quick brown fox jumped over the lazy dog. OK (163)
Markup: {none)

Response: The speedy brown fox jumpec over the stupid dog. OK (16b)
Markup: (none)

Response The brown speedy fox jumped the lazy dog over. NO (16¢c)
MarkUp: A « A «

Angle brackets specify a list of (one or more) ignorabie words.
<the a> brown fox jumped over [lazy stupid] dog an
There may be several lists of ignorable words, which may appear anywhere in the response, but the effect
will always be the same as a single list of ignorables at the front of the model. Any response word which
matches any of the ignorable words "well enough" will simply be treated as if it were not present in the
response. "Well enough" is defined to permit captialization and accent errors, but no other kinds of spelling
errors. Thus, if (17) is used as a model, the following responses will all be judged correct:

Response: A brown fox jumped over the stupid dog. (18a)

Response: The brown fox jumped over the lazy dog. (18b)

16

10

S
“

Version 2.0 of the MarkUp XFCN places some limitations on both rsodel and response string:

The model and response strings must each be 255 characters or less (or 22 characters,
if you have selected the SpellingOnly analysis).

No single word in the model or response may be more than 22 characters (purctuation and spaces
do not count as part of a word)

Neither model nor response may contain more than 18 words. Each entry in an ignorable word
list or synonym list counts as a word.

Exceeding these limits will cause MarkUp to abort the judging process and return an error string which
defines the nature of the error.

These limits are hard-coded in PASCAL as global constants, and can be changed by recompiling the
PASCAL source code. They are imposed by the fact that Version 2.0 of MarkUp defines its large data
structures as static arrays within PASCAL. Since MarkUp XFCN runs under HyperCard and has to borrow
its space from HyperCard, increasing the limits above causes the HyperCard stack to overflow into the heap
and immediately terminates HyperCard with system error 28 (stack has moved into application heap).

ADDITIONAL PARAMETERS CONTROLLING THE MARKUP PROCESS

The more technical aspects of the markup analysis can be controiled by changing the values of the five
HyperCard global variables theMarkUpPunctuation,theMarkUpSymbols,
theMarkUpWeights, theMarkUpPhonMatrix and theMarkUpCharInfo. You can change the
values of these variables by using the HyperCard PUT command, and can inspect their current values by
using the HyperCard debugger's SHOW VARIABLE.option. It is unlikely that you will have reason to
change these variables, but specialized judging situations somietimes require it

Each of these globals expects a list of comma-separated items as a value. To change a value simply PUT a
new list into the appropriate global variable. You must always provide the entire list of values, including
all the values which you are not changing.

Each time that tne MarkUp XFCN is executed, it examines the values of each of these globals. If the value
is empty, thea the global is ignored and the default values built into MarkUp (as indicated immediately
below) will be used. If the value is non-empty, then the contents of the global will be read into the
appropriate PASCAL tables and variables before the markup analysis is begun. Hence, you may revert to
the default values of the parameters at any time by simply PUTing empty into the appropriate global.

Note that these parameter values are "sticky”: once you have PUT a value into a global, it will continue to
be effective until you change it, or until you leave HyperCard. You do not need to reset these values each
time you call the MarkUp XFCN. Of course, it will not hurt anything if you do so, except to slow things
down a bit.

IMPORTANT: The information from these global variables is converted into PASCAL strings which
cannot be more than 255 characters long. Hence, never put more than 255 characters of text into these
variables.

Each of the four global variables expects to receive a list with a very exact format, as explained here:
theMarkUpPunctuation This string of characters determines what characters MarkUp

will consider to be punctuation marks if they occur in the
student's response. Its default value is ("<>; : () [J<>2!"

I

theMarkUpPunctuation

theMarkUpSymbols

theMarkUpweights

This string of characters determines what characters MarkUp
will consider to be punctuation marks if they occur in the
student's response. Its default value is ("<>; : () [J<>2!"
& space & return). If youredefine the punctuation set
don't forget to include the space and return characters.

This string is a list of 12 characters which determine the
symbols used to display the error markup. The default value
of the string is "_ _~XA«x\=><[". Each position in the
list corresponds to a particular type of error:

1 addczp " " underscore

2 dropcap won underscore

3 accenterror wan tilde

4 extraword X capital x

5 missingword nAv capital delta

6 moveword " double left arrow

7 extraletier e lower case x

8 missingletter LA backslash

9 substituteletter et equal sign

10 transposeletter] wHu left angle bracket

11 ‘transposeletter? ngm right angle
bracket

12 runoaword nw left square bracket

The shapes shown are those which display in courier font. If
you use a font cther than courier, you may need to change
some of the characters in this list, selecting appropriate
characters from the font that you are actually using.

This is a list of nine comma-separated numbers which
determine how spelling errors are computed. The default value
of the is "20,20,30,20,1,1,0.67,0.35.0.2" The meaning of
each posiion is

1 winsert 20

2 wdelete 20

3 wchange 30

4 wiranspose 20

5 wcap 1

6 waccent 1

7 cutoff 0.67
8 prop_errors 0.35
9 runon_criterion 0.2

The names in the second column are the PASCAL variable
names used internally by the MarkUp XFCN. The first six
numbers are the costs or weights attached to (respectively)
letter insertion, omission, substitution, transposition,
capitalization errors, and accent errors, when matching for
spelling errors. The last three numbers have the following
meanings:

cutoff: Ratio of word lengths (shorter/longer) must exceed this
value, or the edit distance between them will automaticaily be
set to infinity (relevant only when the "shortcut" input
parameter is set to True).

12

theMarkUpPhonMatrix

theMarkUpCharInfo

base character info:

5

prop_errors: Normalized edit distance between two words must
be less than this value, or the two words will be considered
non-matches

runon_criterion: Maximum edit distance which can exist
betwesn the concatenation of two adjacent model words, M and
M’, and a response word R, if R is to be considered as a
candidate match for M and M’ run together.

This is a list of 25 (=5x5) comma-separated integer values.
The first five values correspond to the first row of the
phon_matrizx; the next five to the second row, and so on,
Item number R of row number M specifies the cost of
replacing a model character of category M by a response
character of category R. I e., the list of entries is in this
order: :

(ml r1) (m1 r2) (m1r3) (m1 r4) (m1 15) (m2rl) (M2 12)
(m2 n3) ...,

Defines character properties such as case, base character,
diacritic, and phonetic category. If you are using special
character sets or special alphabets or keyboards, you may need
to change this information. The values you provide here will
be read into various PASCAL arrays internal to the MarkUp
XFCN code resource. How to change these tables is described
in the next section.

CHANGING THE CHARACTER INFORMATION TABLES

As explained above, the default character information tables may be modified by placing information into
the global variable theMarkUpCharInfo. However, the information there must be formatted in a
precise way before it can be used by MarkUp. Each HyperCard line in theMarkUpCharInfo must
contain information of one of four types: base character, diacritic, case, or phonetic.

IMPORTANT: Each HyperCard line of theMarkUpCharInfo will be placed in a PASCAL string;
hence no line should ever exceed 255 characters. If you have too much information to fit on one line, use
additional lines for the remaining information.

The format for each type of information is as follows:

b,CHARX x x x ..

Here "b" is a switch which informs MarkUp that the following
information concermns base character. CHAR is a base
character, and x x x x ... stands for a list of characters with
diacritics which have char as their base character, e. g.,

1y

13

Notice that case, like base and diacritic is an character attribute,
so 2il base characters should be specified as lower case
characters.

diacritic info: d,DIACRIT,x x x x ..

Here "d" is a switch which informs MarkUp that the following
information concerns diacritics. DIACRIT must be one of the
diacritic values: acute,grave,circumflex,
dieresis, supero,cedilla,tilde,macro. x X X
X ... stands for a list of characters which have that type of
diacritic, e. g.,

dacuted é { 6 o
dgraved ¢ 1 0 0
deedillag C
d,dieresis, i & 1 & i

case info: ¢,CASEx x x x ..

Here "c" is a switch which informs MarkUp that the following
information specifies character case. CASE must be one of
the two case values up_case or down_case, and x x x x .. 1is
1 list of characters that have that attribute, €. g.,

cup_casc ABCDEFGHIJKLMNOPQRSTUYVY
WXYZ
cdown_caseabcdefghijklmnopgrstuvwxyz0
123456789

phonetic info: p,PHONXx x x x ..

Here "p" is a switch which informs MarkUp that the following
information specifies "phonetic” properties, PHON is one of
the five values vowel, consonant, phon3, phon4, or
phon5; the list x x x x ... is a list of the characters which
have that attribute, e. g.,

p,vowela e i ou y
pconsonantb cd fghjklmnpgrstvwxz

Phonetic information is used to adjust the edit distances
assigned for mismatched letters.

Regardless of the type of information, the first two items in each line must be separated by commas. The
remaining entries in the line may be run together or separated by one or more spaces for readability (as in
these examples). There can be any number of lines, and the different types of information can be mixed in
any order.

INFORMATION RETURNED BY MARKUP

The MarkUp XFCN directly returns the graphical markup string, which can simply be displayed beneath the
student’s response. (Note, however, that unless the markUpNeeded input value was T rue, MarkUp will
return an empty string.)

)

If there was some proble... which prevented MarkUp from carrying out judging in the usual way, the
judging will be aborted and an error message will be returned in place of the usual string. This error
message will give a brief description of the nature of the problem and will always be prefaced by a single
“%" character. This will be true even if no markup was requested. Hence, HyperCard can look at the first
character of the MarkUp XFCN return to see whether the retumn is an actuzl markup string or an error
message and act accordingly.

The MarkUp XFCN may also return information in four other global HyperCard variables:

theMarkUpReturnvalues A list of comma-separated items. Usually, the first ilem will
be "True” (if the response was judged OK), or "False” (if it
was judged NO). The remaining items contain additional
information about the match. (If spellingOnlyNeeded
is not "x", however, the return will be different.) This
information is returned every time MarkUp is called.

theMarkUpMaps If markup maps were requested, they are placed in this variable,
a response-to-model map in the first line, and a model-1o-
response map in the second line. This information is returmed
only if the input parameter markUpMapNeeded is set to
True.

theMarkUpParamDisplay If a display if judging parameters was requested by setting
parameterDisplayNeeded one of the non-default
options, then the requested information is returned in this
variable.

theMarkUpDebug Reports technical information on the operation of Markup.
This global is intended for development purposes and is created
by MarkUp only if the debugNeeded is turned on.

IMPORTANT: If you have not requested the map or parameter display information, then the values of the
three global variables t heMarkUpMaps, theMarkUpParamDisplay and theMarkUpDebug are left
unchanged. Specifically, they will not be sct to empty, and the information they contain may be out of
date. Itis up to your HyperCard script to make sure that any information you read from these globals is up
todate. In contrast, the values in theMarkUpReturnvValues are updated each time MarkUp is called,
whether you request it or nu:t, hence they are always current.

The information returned in these global variables can be inspected visually with the HyperTalk debugger
facility, or by PUTing a copy into a field. Or it can be read directly by your scripts. Neither you nor your
program will be able to make any sense out of the information returned, however, unless you know how it
is formatted. The details of formatting are explained in the following paragraphs.

theMarkUpReturnValues always returns information about the match between model and response.
The nature of the information, however, depends on the value of the input parameter
spellingOnlyNeeded.

If spellingOnlyNeeded was "x" (the normal case), indicating a standard word-to-word matching, then
theMarkUpReturnvValues returns a comma-separated list of four values: judgedOk, pMatched,
pNoninversion, and aveDist. The meaning of these items (in the order they appear in the returned list) is:

JjudgedOk This item will be "true” if the response matched the model, or
“false” if it did not. A match is defined relative to the current
values of tolerance for misspellings, extra words, and word
order. This return value can be used to make decisions about
feedback and branching after a response has been judged.

s

9
i

15

However, if something goes wrong during the judging process,
so that judging could not be completed in the normal manner,
judgedOk will be set to "false”. Consequently, you should not
use this value to make instructiona) decisions without also
checking the markup string to see if an error occurred.

pMaiched This value, which ranges from 0.0 to 1.0, measures the
proportion of words matched. It is computed by dividing the
number of matched words by the total number of word types
(non-identical words) in the model and responsc combined,
excluding ignorable words. Equivalently, it may be thought of
as the cardinality of the intersect of the set of model words and
the set of response words, divided by the cardinality of their
union,

pNoninversion This value, which ranges from 0.0 to 1.0, measures the
proportion of words which are in correct order by dividing the
number of inversions in the solution into the total number of
non-ignorable words in the response. Unmatched words
(including ignorable words) are excluded when computing this
inversion count.

aveDist This value, which ranges from 0.0 10 1.0, is computed as the
average edit distance between model-response words pairs
which were actually matched. It provides a measure of how
well the model fits the response with respect to spelling.

If the value of spellingOnlyNeeded was " r" or “p* which simply requests a least-cost edil trace for
the model and response strings, then theMarkUpReturnValues returns a list of two comma-separated
items: rawEditDistance, normalizedEditDistance

Remember that the values in theMarkUpReturnValues are returned automatically each time you call
MarkUp. You do not need to request this information, and indeed you cannot prevent it from being
computed and retumned.

theMarkUpMaps returns information about how the response words are matched with words in the
model. An example will clarify this:

Model: The quick brown fox {jumped leaped] over the lazy dog
Response: The brown quick fox walked over the big lazy dog. (19)

If a markup map is requested for this model and response, the value returned in theMa rkUpMaps will be

1,3.2,4,0,6,7,0,8.9
1,3,2,4,0,6,7,9,10
1,5,11,17,21,28,33,37.41,46 (20)

The first line of (20) is a response-to-model map. It will have as many comma-separated items as there are
words in the response. The first position of this list corresponds to the first response word, the second
position to the second response word, and so on. The number in each position tells which model word is
paired with that position. In case no model word is paired with a particular response word, 0 is returned in
that position. Thus, in the above example, line 1 indicates that response word | goes with model word 1,
response word 2 goes with model word 3, response word 3 goes with model word 2, response word 5 is
unmatched, and so on.

The second line of (20) is a model-to-response map. It will have as many comma-separated items as there
are word positions in the model (a synonym list counts as one word position, and an ignorable word list

16

does not count at ail). The first list position corresponds to the first model word, the second to the second
model word, and so on. The value in each position tells which response word is paired with that position
in the model. If no response word is paired, this fact is represented by the presence of "0" in that position.
In the example above, line 2 indicates that mode! word 1 is associated with response word 1, model word 2
with response word 2, model word 3 with response word 2, model word 5 is unmatched and so on

The information in the two maps obviously overlaps, and in fact when there are no missing or extra words
they give identical information. But because either model or response words may remain unpaired, both
maps are needed to completely specify the match.

The third line of (20) contains information about the starting character number of each response word, as
computed by MarkUp. For example, the first word occupies characters 1-4 of the response, the second word
characters 5-10, and so on. This is different from the HyperCard definition of a word, because MarkUp
includes the space or other punctuation mark immediately preceeding a word as belonging to that word, as
well as trailing spaces up to the next word. These pointer can be used not only to pull individual "words"
out of the response string, but also the markup substring which corresponds to that word out of the markup
string. Note, however, that the markup string has an extra leading character (to accomodate a symbol for
missing words at the beginning of the response), and possibly an extra trailing character (to accommodaie a
symbol for missing words or letters at the end).

The global variable theMarkUpParamDisplay will return different kinds of information depending on
how you set parameterDisplayNeeded when MarkUp was called. In every case, there will be at
least two lines. The first will consist of the string "MUParamDisplay" immediately followed by a single
letter which identifies the type of information. Successive lines contain the actual information. (The
following examples show the information which will be returned when all the default values are in effect.)

If you use "v" as an input valuc of parambisplayNeeded, the return will be of this form,

MUParamDisplay v
Markup XFCN 2.0 18 Aug 93, 12:47 PM - R, Hart UI/UC Language Learning lLaboratory

the second line of which identifies the MarkUp XFCN version number and by date and time of compilation.

If you use "b" as an input value of paramDisplayNeeded, you will get back information in
theMarkUpParambDisplay about the base characters corresponding lo various characlers, in this
format:

MUParamDisplay b
A=a, A=a, ¢=c, E=e,8=n,b=0,0=u,4=a, a=a, a=a

=i, 1=i, 1=i,0=0,8=0,0=0,(=u, C=u, U=y

Here each HyperCard item is of the form C=B. This denotes that the base character of C is B. Only those
characters which are actually accented appear in this list. If a character is not in the list, this means that is
has no accent and thus is its own base character.

If you use "d" as an input value of parambisplayNeeded, then you will get back information in
theMarkUpParamDisplay about the diacritic of each letter, in a formal similar to that used for base
character:

MUParamDisplay d
A=4,C=7,E=1,N=8,O=4,0=4,é=1,é=2,é=3,a=4,a=8,¢=7,é=1,é=2,é=3,e=4,x=1,1=2,1=3,;=4,ﬂ=8,0=
1,¢=2,6=3,06=4,0=8,0=1,0=2,0=3,0=4,A=2,A=8,0=8,9=4,9=4,A=3,£=3,A=1, B=4q, B=2, t=1, $=3, 1=4,
1=2, 6=1,0=3,0=2,0=1,0=3,0=2

17

18

Each HyperCard item will be of form C=N, where C is a character, and N is an integer between 1 and 14.
Each integer represents the value of a diacritic, thus

no_accent
acute
grave
circumflex
dieresis
umlaat
supero
cedilla
tilde
subdot

10 superdot
11 subhat

12 superhat
13 subhook
14 macron

VOITAR N LN =O

This set of diacritics is hard-coded into the PASCAL program for MarkUp and cannot be modified without
changing the list of diacritic_variants in the PASCAL global TYPE declaration.

Characters which are not accented will not appear on the list. If a character is not on the list, this means
that it has the default diacritic type 0 = no_accent.

If you use "c" as the input value of parambisplayNeeded, then you will get back information in
theMarkUpParamDisplay in this form:

MUParamDisplay ¢
A,B,C,D,E,F,G,H,1,J,K,L,M,N,0,P,QR,5,T,U,V,WX,Y,2

The secend line is a comma-separated list of all the characters which are currently classified as upper-case.
Only the upper-case characters are displayed. If a character is not on this list, it is classified as a lower-case
character.

If the input value of paramDisplayNeeded was "h", then information about the phonetic value of the
characters will be returned in theMarkUpParamDisplay:

MUParamDisplay h

=1, =1, =1, =1, =1,\=1, =1, =1, =1, =1, =1,ap=1,para=1, =1, =1, =1, =1, =1, =1, =1,

=1, =1, =1, =1, =1, =1, =1, =1, =1,-=1,~-=1, =1,!=1,"=1,4#=1,$=1,%=1,¢6=1,'=1,(=1,)=1,
*=1, +=1,,=1,h=1, .=1,/=1,0=1,1=1,2=1, 3=1,4=1,5=1, 6=1,7=1,8=1,9=1,:=1,;=1,<=1, ==1,>=1,
?=1, @=1, A=0,B=1,C=1,D=1,E=0,F=1,G=1,H=1, I=0,J=1,K=1, L=1,M=1,N=1,0=0,P=1,Q=1, R=1,8=1,
T=1,U=0, V=1, W=1,X=1,Y=0,2=1, [=1,\=1,)=1,~=1, =1, =1,a=0,b=1,c=1,d=1,e=0, £=1,g=1,h=1,
i=0, j=1,k=1,i=1,m=1,n=1,0=0,p=1,q=1, r=1,s=1,t=1,u=0,v=1l,w=1l, x~1,y=0,2=1, {=1, |=1, }=1,
~=1, =1,A=0,A=0,¢=1,E=0,R=1,8=0,0=0, 4=0,a=0, =0, 4=0, a8=0,4=0,¢=1,&=0,&=0, =0, &=0, 1=0,
i=0,1=0, =0, A=1, 6=0,0=0,6=0,4=0,06=0,0=0, 4=0,0=0,0=0, 1=1,%=1,¢=1,£=1,8§=1, ¢=1,9=1, B=1,
®=1,@=1,M™=1, =1, "=1,#=1,£=0,0=0,w=1,t=1,%=1,2=1,¥=1,p=1,0=1,Z=1,[I-1,n-1,[-1,¢-1,°-1,
Q=1,8=0,2=0,:=1,;=1,~=1,V¥=1, f=1,m=1,A=1, «=1,»=1,..=1, =1,A=0,A=0,0=0,E€=0,®@=0,~=1,~-=1
w=1,%=1, ‘=], ' =1, +=1,0=1, =0, ¥=0, ~=1,0=1,¢=1, »=1,{l=1,fl=1, t=1, »=1,, =1, ,=1,%=1,A=0, £=0,
A=0,B=0,8=0,1=0, 1=0,t=0,!=0,06=0,8=0, $=1,0=0,0=0,0=0,0=0, 1=1, "=1, "=1, "=1, "=1, "=1,"-1,
(=1, tal, =1, %=1

Here the second line consists of a list of comma separated items of form C=P. C is a character and P is an
integer value which corresponds the phonetic category of C. The current possible values of P are

0 vowel
1 consonant
2 phon3

0D
>

Q

ERIC

Aruitoxt provided by Eic:

9

3 phond
4 phon5

The phonetic value of every character is returned, in character-code order. In courier and most other fonts,
the first 32 characters are control characters and will display as blank boxes. The 44th character, which is
the comma, displays this way

thus creating a spurious emply item at the 44th position. This must be taken into account when using the
HyperCard ITEM chunk designator to parse this information.

If you enter "p* as the value of parampisplayNeeded when you call MarkUp, then you will get back
in theMarkUpParamDisplay a list of all the characters that count as punctuation. This example
> displays the default value for the set of punctuation characters:

MUParambDisplay p

), c00? ()

The list occupies two lines because the first character is a return character which displays as a carriage
retum/line feed. The second character is a space, and the third an exclamation mark.

If you enter "w" as the value of paramDisplayNeeded when you call MarkUp, then a list of nine
comma-separated items will be returned in theMa rkUpParamDisplay :

MUParamDisplay w
20,20,30,20,1,1,90.35,0.67,0.2

These nine items represent the values of the following parameters which are used in the spelling analysis
(the values shown in this example are the default values):

item 1 winsert 20
item 2 wdelete 20
item 3 wchange 30
item 4 wiranspose 20
item 3 wcap 1
item 6 waccent 1
E item 7 cutoff 0.67
item 8 prop_errors 0.35
item 9 runon_criterion 0.2

Entering a value of "£" for paramDisplayNeeded will cause theMarkUpParamDi splay to
contain information on the various judging flags in this format:

MOParamDisplay f
false,false,false,true,true,true,true, false, f

The second line contains a list of nine comma-separated items which control the way judging is performed

v g

o

item 1 anyOxderCk

item 2 extraWordsOk

itemn 3 misspellOk

item 4 wordMark UpNeeded
item 5§ nntogetherNeeded
item 6 adjustNeeded

item 7 shortCut

item 8 markUpMapsNeeded
item 9 paramDisplayNeeded

Finally, if you use "s™ as an input value of paramDisplayNeeded, then
theMarkUpDisplayParams will contain a 12-character list of all the markup symbols:

MUParamDisplay s
+=~ XA\ =>< [

The meaning of a character depends on its position in the list:

char 1 addcap " underscore

char2 dropcap " " underscore

char 3 accenterror wau tilde

char4 extraword "X" capital x

char§ missingword "A" capilal delia

char6 moveword "«" double leftward arrow
char7 extraletter "x* lower case x

char 8 missingletter "\" backslash

char9 substituteletter v=" equal sign

char 10 transposeletter] "> left angle bracket
char 11 transposeletter? "< right angle bracket
char 12 unonword "iv left square oracket

If you use "m" is the value of paramDisplayNeeded, theMarkUpParamDisplay will contain the values of the
phon_matrix matrix discussed earlier. Since therc are 5 possible character categorics, phon_matrix is a 5x5
matrix and contains 25 entries. The first entry corresponds to row 1, column 1; the second entry to row 1,
column 2; ... the sixth entry to row 2, column 1, and 30 on. Row M, column R contains the cost of
replacing a character of type M by one of type R:

MUParamDisplay m
30,36, 3¢,36,36,36, 30,36,36,36,36,36,30,36,36,36,36,36,30,36,36,36,36,36, 30

EXAMPLE 1: MARKING UP A RESPONSE IN HYPERCARD

Here is a simple annotated exaraple of how to use MarkUp to do the answer judging in your own stack. It
assumes that the current card has a card field called "prompt” where a question is displayed, and a second card
field called "response” where the student will type in a response to the question. A third card field named
"markup” must be located below the “response™ field. It will be used to display the markup feedback. 1f

card field "markup” does not exist, it can be created and positioned by executing the setUpMarkUp handler,
as explained below.

The following handlers should be placed in the card script if MarkUp is only needed on one card. If MarkUp
will be needed thronghout the stack, put these handlers in the stack script and change the openCard and
closeCard handlers to openStack and closeSt ack handlers.

3

O
-

20

=R

O

i
i
i
[

Aruitoxt provided by Eic:

Before you can use MarkUp, you must attach the stack which contains the MarkUp XFCN. This stack is
aamed "markUp XFCN 2.0" in the software distribution of MarkUp. Besides the code resource which
implements MarkUp, the stack contains in its stack script a number of handlers useful for integratir)g

MarkUp into HyperCard programs.

on openCard

-~ If the markUp XFCN stack is located in some other folder, change
-- the path accordingly.

start using stack "myFolder:markUp XFCN 2.0"

~- This enables use of the markUp XFCN. Parameter value “response" is
-~ the name of the field where the student will type in a response.

-- It must be a CARD field.

setUpMarkUp “response"

-~ Ask a question to elicit a written response. In a real drill program,
-~ this would be done somewhere other than in OPENSTACK, e. g., in

-- the handler which presented the next drill item.

put "“Type in the French words for the numbers 1 to 10." into card
“prompt*

end openCard

on closeCard

-- markUp XFCN uses a lot of space, so disconnect it as soon as it's not
== needed.

stop using stack "myFolder:markUp XFCN 2.0"

end closeCard

field

IC

<

'a %)

21

O

ERIC

Aruitoxt provided by Eic:

on judgeResponse

-~ This handler contains the commands to to the judging and the markup.
—~~ It must be called from the response field.

~- The following globals MUST be declared in any handler that calls
-~ the MarkUp XFCN, because MarkUp may examine their values with callbacks.

global theMarkupReturnValues, theMarkUpSymbols, theMarkUpPunctuation, =
the MarkUpParameters, theMarkUpCharInfo, theMarkUpParamDisplay, =
theMarkUpMaps, theMarkUpDebug

~~ Erase any previous markup.
put empty into card field "markUp"

-- Copy the correct answer string into a variable. 1In a real drill program,
-~ this might he done in the handler that present the item.
put "un deux trois quatre cinque six sept huilt neuf dix" into model

~- Execute the MarkUp XFCN and store markup string which is returned.
put markUp(model, card field "response") into markUpString

--Use returned values to generate feedback display.
if (item 1 of theMarkUpReturnValues = "True") then
-~ If resonse was judged correct, no markup required.
put "OK" into card field "markUp"
else
-- If response had errors, display markup string.
put markUpString into card field "MarkUp"
end if

end JjudgeResponse

In addition the following handlers must be placed in the script of the card field where the response is typed
(in this examnple it will be card field "response”):

on returnlinfield

judgeResponse
show card field "markUp"
end returnlInfField

on keyDown ch
put the selectedchunk into s
hide card field "markUp"
select s

pass keyDown

end keyDown

This returnInField handler causes response judging to begin as soon as the student presses the
RETURN key. The keyDown handler makes the markup disappear as socon as the student begins to edit

Ie

e}

the response. It is important to do this because when the response string changes, the markup becomes
invalid (e. g., if the student deletes letters, some markup symbols may no longer be under the right letters).

Executing the setUpMa rkUp handler changes the default font of the response field to be "Courier” (but
does not change any other text properties). This change to a fixed-width font is required so that the markup
symbols will be properly alligned beneath the letters of the response. It is not essential to use Courier; any
non-proportional font will do, but setUpMarkUp must be modified if you want to use some other font.
If you use the MarkUp XFCN only to judge the response and do not intend to display the error markup,
then you need not execute setUpMarkUp at all.

IMPORTANT: SetMarkUp installs the "markup” field behind and slightly below the response field. It
assumes that the response field is only a one line deep, and that it has been shaped so that the bottom of the
field is immediately beneath the longest descender. If your response field is not configured this way, the
markup characters may be completely hidden by the bottom of the response field.

For expository simplicity, the judgeResponse handler above supposes that the judging proceeded
normally. In actual courseware, the markup string should always be checked so that error conditions such
as too many letter in a word or words in a sentence can be detected and the student informed that the "NO"
judgment was due to a special problem. Whenever there is some problem which prevents judging from
being completed, MarkUp returns, instead of the normal markup, a string which begins with the character
“%". The remainder of the string gives a brief description of the problem. To use this feature, modify the
code in judgeResponse along these lines:

-~-Use returned values to generate feedback display.

if (char 1 of theMarkUpString = "%") then -- Check for error.
delete char 1 of theMarkUpstring -- Get rid of the "%" char.
answer "There was a problem ijudging you answer:'" & return & —
theMarkUpString & return & "Please try again." with "Ok"

else
if I item 1 of theMarkUpReturnValues = “True") then
-- If resonse was judged correct, no markup required.
put "OK" into card field "markUp"
else
-- If response had errors, display markup string.
put markUpString into card field "MarkUp*®
end if
end if

EXAMPLE 2: MODIFYING THE MARKUP AND PUNCTUATION LISTS

The following HyperCard program segment illustrates how the details of judging and the appearance of the
markup can be manipulated by resetting the global variables t heMarkUpPunctuation and
theMarkUpSymbols:

BEST COPY AVAILABLE

oo
o

23

O

ERIC

Aruitoxt provided by Eic:

global theMarkUpSymbols, theMarkUpPunctuation

-~ Change some of the markup symbols. New symbols are:

-= "?2" = @xtra word, """ = make upcase, "~" = make downcase, “°" = extra letter,
-~ """ = transposed letters, "“-" = incorrect letter, "''" = missing letter.
put """~?2A«° "*¥[" into theMarkUpSymbols

-- Change punctuation so that a hyphen will be trcated as a word separator, and
-- the final period will be judged.

put ("=2?!,::()[]" & space & return) into theMarkUpPunctuation

These commands can be executed any time before the MarkUp XFCN is called. They changes which they
cause will persist until you reset the global variables again. The above modifications in the markup
symbol and punctuation lists will resuit in markups like the following:

Model: The gquick brown fox jumped over the lazy dog.
Reponse: the gick prown foxx jumpde the big-Lazy ddg over
Markup: - o wwp 222 - -« @1

The spelling- and case-error symbols have been chosen so that they are smaller and higher in the line than
the defaults. This results in a less cluttered spelling markup and clearer visual distinction between the
spelling and the word-order symbols. On the other hand, the meaning of the spelling symbols may be
somewhat less obvious. Notice that the omitted period at the end of the response is now marked as a
missing character, and that "big" and "lazy" are judged as separate words, in keeping with the changes made
to theMarkUpPunctuation.

The spelling and word-order markups can easily be separated by changing the values of the input parameters
misspellOk, anyOrderOk, and extraWordsQk. This permits the two types of errors to be dealt with
separately by modifying the judging in example 1 in this way:

' 24

Aruitoxt provided by Eic:

global theMarkUpReturnValues

-- Allow word order and extra word errors. Such errors will not be judged or marked
~~ during this call to MarkUp.

put markUp(model, response,,True,True) into spellMarkUp
put item 1 of theMarkUpReturnValues into wordOrderOk

-- Allow spelling errors. Such errors will not be judged or marked during
-- this call to MarkUp.

put markUp(model, response,True,,) into wordOrderMarkUp
put item 1 of theMarkUpReturnValues into spellingOk

-~ If there were any word order or extra word errors, mark them up.
~- Otherwise, mark any spelling errors. If no errors of either kind are
-~ present, judge OK.

If wordOrderOk = “"False" then
put “First, correct your grammar problems” into card field “feedBack"
put wordOrderMarkUp into card field "markUp"
else if spellingOK = "False" then
put "No. Let's look at your spelling errors." into card field "feedBack"
put wordOrderMarkUp into card field "markUp®
else
put "OK" into card field "feedBack"
ena if

EXAMPLE 3: JUDGING WITH MULTIPLE RIGHT AND WRONG ANSWERS

A common instructional situation is for a question to have several alternate correct answers. In addition the
courseware author may have anticipated several incorrect answers, each of which requires its own specific
feedback. Of course, the student's typed response may not exactly match any of the anticipated (correct or
incorrect) answers, due to misspellings and other errors. An adequate response analysis requires matching
the response against each of the models and determining which one provides the closest match. The
MarkUp XFCN returns three numbers which measure goodness of match: pMatched (percent of words
matched), pNoninv (percentage of words in correct order), and aveDist (the average edit distarice between
words in matched pairs). Whenever MarkU s called, these numbers are returned as items 2, 3, and 4 of the
HyperCard global variable theMarkUpReiLurnvValues.

To determine best fit, these numbers must be combined to provide a single goodness-of-fit metric. Of
course, a response which is judged "OK", and is thus error-free relative to the current scttings of the
extraWordsOk, wrongOrderOk and misspelledOk flags, should always fit better than any response which is
judged "NO'; beyond this, however, the relative contribution of these three factors in providing an intuitive
good fit is not clear. Further empirical study is required but has not yet been undertaken. Lacking data, we
can as a first approximation suppose that all three factors are weighted equally, so that the metric will be

BEST COPY AVAILABLE

25

O

Aruitoxt provided by Eic:

goodnessOfFit = 1.0, if judgedOk is True
(3*pMatched *(1 - aveDist) + pNoniv)/4, if judgedOK is False
(22)

Here, 1 has been subtracted from aveDist so that values will range from 0.0 (no fit) to 1.0 (perfect fit), as
with the other two quantities. ‘The resultant value of goodnessOfFit will vary between 0 and 1.0, although
that is not crucial for the application we are developing here.

Supoose now that we have these data for a single question contained in a card field named "item":

Complete this sentence: Ice cream tastes than spinach.

answer Ice cream tastes better than spinach
Yes, I agree.
answer Ice cream tastes worse than spinach
I don't think so, but if you think so, OK.
wrong Ice cream tastes gooder than spinach
"good™ has a special comparative form: "better™.
wrong Ice cream tastes more good than spinach
"more" is used to form the comparative of multi-syllable adjectives.
wrong Ice cream tastes more better than spinach

Use either "more" or "-er” to form the comparative, not both at once!
#

These data are formated as follows: the first line is the prompt. Specifications for the correct and wrong
answers, and for feedback, follow on the remaining lines. The end of the data is marked by a "#" symbol in
column 1. A correct answer must occupy only one line and is indicated by the word "answer” as the first
word of the line. Similarly, a wrong answer is indicated by the word "wrong" as the first word. All the
lines that come after an answer but before the next answer (here indented for readability) are the feedback
which will be shown if the preceeding answer is the best match for the response.

on showPrompt
-- Copy data into global variable ITEMDATA and display prompt to student.
global itemData

put card field "item" into itemData
put line 1 of itemData inrto card field “prompt"

end showPrompt

ERIC

26

ot

Aruitoxt provided by Eic:

on

end

returninField

-~ Compair typed resonse to the answer in global var ITEM and find best
-- Display feedback and markup which goes with best matched answer.
-~ If no aswer is matched, display "NO"

global itemData

-- Search itemData for best ans.
put findBestAns(target, itemData) into bestAns

put item 1 of bestAns into bestFit

if (bestFit = 0 } then
put "NO" into card field "feedBack" ~- NO answer matched.
else
put item 2 of bestAns into bestLine
put item 3 of bestAns into bestMarkUp
put word 1 of iine bestLine of itemData into polarity -- Ans or
if (polarity = "answer") then

match.

Wrong?

put "“OK" into card field "feedBack" -- Matched correct answer.

else

put “NO" into card field “feedBack" ~~ Matched wrong answer,

end if

repeat with i = bestLine + 1 to number of lines in itemData -- Find feedback.

if (word 1 of line i of jitemData is in "answer wrong #")
then exit repeat
end repeat

put line bestLine + 1 to { - 1 of itemData atu=r card field "feedBack"

returnInField

%)
LV

27

28

function findBestAns response, ltemData

-~ Scan through all correct and incorrect answers in ITEMDATA and find
-- the one which matches RESPONSE best.

-- ANSDATA must contain answer & feedback data, formated as shown above.
-=- Return is a list of three comma-separated items:

-- Item 1: Goodness value of best-matched answer (0 if no match).
~-= Item 2: Line number within ITEMDATA of best matched answer.
-~ Item 3: Markup string which goes with best matched answer

global theMarkupReturnvValues, theMarkUpSymbols, theMarkUpPunctuation, -
the MarkUpParameters, theMarkUpCharlInfo, theMarkUpParamDisplay, —
theMarkUpMaps, theMarkUpDebug

put O into bestFit
put empty into bestLine
put empty into bestMU

repeat with § = bestlLine + 1 to number of lines in itemData
put line i of itemData into m
if (word 1 of m = "answer") or (word 1 of m = "“wrong") then

delete word 1 of m
put markUp(m, response) into mu
put item 1 of theMarkUpReturnValues into match
1f (match = "True") then
put item 2 of theMarkUpReturnValues into pMatched
put item 3 of theMarkUpReturnValues into pNonlnv
put item 4 of theMarkUpReturnValues into aveDist
put (pMatched + pNonInv + 1 - aveDist)} / J into ansFit
if (ansFit > bestFit) then
put ansFit jnto bestFit
put i into bestlLine
put mu into bestMU

end if
end if :
end if

end repeat

return (bestFit & "," & bestLine & "," & bestMU) E

end findBestAns

The findBestAns() function simply searches through the answer data looking for each "answer” or
"wrong" specification. Whenever one is found, it is matched against the response. If there is a match and
that match improves on the best of the previous matches, the current match is made the best one.
Eventually all the answers are examined and the information about the best matched one is returned.

EXAMPLE 4: USING THE MARKUP MAPS TO CONTROL VOCABULARY HELP

When writing foreign language courseware, a simple graphic markup is often not specific enough as error
feedback. If, for example, the student is ignorant of certain vocabulary words required by the response, a
missing or unidentified word markup may not provide sufficient help. The handler below uses the markup

o }
ERIC ’ B

Aruitoxt provided by Eic:

ERIC

Aruitoxt provided by Eic:

maps to see which words in the model are not matched by words in the student's response, and given
vocabulary help on just those items. As before, we will suppose three card fields named "prompt",
"response”, and "markUp", and in addition one called "vocHelp", where vocabulary help will be displayed.

on presentlItem
global correctArns, voclList

put "Translate to French: She read the last ten page pages for us.,'" =
into card field "prompt"
put "Elle nous a lu les dix derniéres pages." into correctAns

-- The items in this list correspond to words in the correct answer.
put "Elle,nous,avoir,lire (irreg),le/la,dix,dernier,page (£f)" into voclList

setUpMarkUp "response"

end presentlItem

on judgeResponse

global theMarkupReturnvalues, theMarkUpSymbols, theMarkUpPuntuation, -
the MarkUpParameters, theMarkUpCharInfo, theMarkUpParamDisplay, —
theMarkUpMaps, theMarkUpDebug, correctAns, voclist

-- Request return of markup maps by setting markUpMapsNeeded to True..
put markUp(correctAns, target,,,,,,,,,.True) into markUpString

--Use returned values to generate usual markup display.
if I item 1 of theMarkUpReturnValues = "“True") then
-~ If response was judged correct, no markup required.
put "OK" into card field "markUp"
else
-- If response had errors, display markup string.
put markUpString into card field "MarkUp"
end if

-- Use markup map to generate additional vocabulary help.

put line 2 of theMarkUpMaps into MtoRMap -- Model-to-response map
repeat with i = 1 to numoer of items in MtoRMap
if (item i of MtoRMap = "0") then

put (word i of voclist & return) into card field "vocHelp"
end if
end repeat

end judgeResponse

on returnInField
~-- This handler must be in the script of card field "response"
judgeResponse

end returnlnField

29

O

ERIC

Aruitoxt provided by Eic:

EXAMPLE 5: USING MARKUP MAPS TO JUDGE LISTS

Many questions solicit answers in the form of a list, for example, "Name the five Great Lakes", or perhaps
"Name at least three of the five Great Lakes". In such cases, the order in which items are listed is not
relevant, only the fact that they are present somewhere in the response. The first case, "Name the five Great

Lakes" can be easily provided for by setting anyOrderOk (the 5th parameter slot) to True when the
MarkUp XFCN is called:

get markUp("Michigan Superior Huron Algonquin Ontario", target,,,True)

Missing words, extra words, and misspellings will still be marked appropriately, but any order at all will be
accepted. Punctuation, as usual, will be ignored when doing the judging, so the student may use spaces or
any other kind of punctuation to separate words. Note, however that anyOrderOk operates on individual
words, not phrases, so that a question like "Name the Dakotas" cannot be reliably judged using

get markUp (“North Dakota South Dakota', target,,, True)

because answers like "South Dakota Dakota North” will be judged as correct. There is no way to define or
manipulate phrases in version 2.0 of the MarkUp XFCN.

The response to a question like "Name at least three of the 5 Great Lakes” can be handled efficiently with
the help of the markup maps, using handlers like these:

function countlInstances list, object

-- LIST must be a list of comma-separated items.
-- OBJECT is a value to match to each item (case and accent ignored).
-~ Return is number of times OBJECT occurred as an item in LIST.

put 0 into count
repeat with i = 1 to number of items in list

if (item 1 of list = object) then add 1 to count
end repeat

return count

end countiInstances

(O
o~
S

on

judgeResponse

global theMarkupReturnValues, theMarkUpSymbols, theMarkUpPunctuation, -
the MarkUpParameters, theMarkUpCharlnfo, theMarkUpParamDisplay, —
theMarkUpMaps, theMarkUpDebug

put "Michigan Superior Huron Algonquin Ontario" into correctAns

-- Set anyOrderOk and mark!lgMapsNeeded to True.
put markUp(correctAns, target,,True,,,,,,True) into markUpString

put line 1 of theMarkUpMaps into RtoMMap -~ Response-to-model map.
put line 2 of theMarkUpMaps into MtoRMap -~ Model-to-response map.
put countlnstaces{ MtoRMap, "1") int¢ numCorrect

put countlInstaces(RtoMMap, "O") into NumIncorrect

if (numCorrect >= 3 } and (numlncorrect = 0) then
put "“OK" into card field “"feedBack"
else
put "NO" Into card field "feedBack"
put markUpString into card fleld "markUp"
end if

end judgeResponse

The function count Instaces () is used here to count both the number of lakes which are matched and
the number of response words which are unmatched and thus do not correspond to any lake. If three or more
lakes were matched, and there were no incorrect lake names, then the student has successfully answered the
question. Otherwise, the markup is shown; this will mark any incorrect lake names as extra words.

EXAMPLE 6: A COMPLETE VIEW OF JUDGING PARAMETERS

When using MarkUp to develop new courseware, it is sometimes convenient to collect and view

information on all of the judging parameters. This can be easily done with the following HyperCard
function:
ﬁ function fullParamiInfo

end

global theMarkupReturnValues, theMarkUpSymbols, theMarkUpPunctuation, -
the MarkUpParameters, theMarUpJudgingTables, theMarkUpParamDisplay, -
theMarkUpMaps

put “nbdchpvfm" into typeList
put empty into r

repeat with 1 = 1 to length(typeList)
get markUp(,,,,,,+,+,, { char i of typelist)) -- Puts info into global.
put (theMarkUpParamDisplay & return & return) after r

end repeat

return r

fullParamInfo

im{fc

Aruitoxt provided by Eic:

31

Q

ERIC

Aruitoxt provided by Eic:

Notice that the MarkUp XFCN is called with null model and respotise strings; since the object here is not
to get a markup, but to retrieve information about the current markup parameters, entering strings to be
judged is unnecessary. Only the 12th parameter, which specifies the tyz~ of information 1o be returned, is
systematically varied by having the loop step through the list "nbdchpvfm”. Each call retums a result

which is appended to the temporary variable r. Calling this function and putting the return value into a
field, e. g.,

put fullParamInfo() into card field "parameterDisplay"

will yicld a formated display like this one:

MUParamDisplay n
Markup XFCN 18 Aug 93, 12:47 P =~ R. Hart UI/UC Lanquage Learning Laboratory

MUParamDisplay b

A=a,A=a,(=c,E=e, N=n, =0, U=u, &=a, 4=a, 4=a, 4=a, 4=a, 4=a, ¢=c, é=e,
i, f=n, 6=0, d=0, 8=0, =0, 8=0, U=u, u=u, 0=y, U=u, A=a, A=a, O=0, Y=y, ¥=
I=i, =1, =1, 0=0,0=0, O~0, U=u, 0=u, O=u

~

MUParamDisplav d

A=4,GC=7,E=1,N=8,08=4,0=4, 4=1, 4=2, 4=3, 4=4, =8, ¢=7, én],6=2,6=3,8=4,1=1,1i=2,1=3,1i=4,n=8, 0=
1,0=2,06=3,8=4,0=8,0=1,0=2,0=3, i=4, A=2, A=8,0=8, 9=4, =4, A=3,8=3 A=1,E=4,8=2,1=1,1=3,1=4,
1=z,o-1,o-3,o-z,o-1,o 3,0=2
MUParamDisplay ¢
A,B,C,D,EF,G,H,1,J,K,L,MNO0,P,QR,S,T,UV,HX,Y,2
MUParamDisplay h
=1, =1, =1, =1, =1,\=1, =1, =1, =1, =1, =1,=1, =1, =1, =1, =1, =1, =1, =1, =1, =1,
=1, =1, =1, =1, =1, =1, =1, =1, =1,=1, =1,!=1,"=1,#=1,%=1,%=1,64=1,'=1,(=1,)=1,*=1,
+=1,,=1,=1,,=1,/=1,0=1,1=1,2=1,3=1,4=1,5=1,6=1,7=1,8=1,9=1, :=1,;=1,<=1,= 1,>=1,2=},@=1i
,A=1,B=1,C=1,D=],E=1,F=1,G=1,H=1,I=1,J=1,K=1,L=1,M=1,N=1,0=1,P=1,Q=1,R=1,8=1,T=1,U=1,
V=1,W=1,X=1,Y=1,2=1, [=1,\=1,]=1, "=1, =1, =1,a=0,b=1,c~=1,d=1,e=0,f=1,9=1,h=1,i=0, j=1,
k=1,1=1,m=1,n=1,0=0,p=1,g=1,r=1,s=1,t=1,u=0,v=1,w=1,x=1,y=0,2=1,(=1,1=1,1=1,~=1, =1,
A=1,A=1,¢=1, £=1,R=1,0=1,0=1, 4=1, 4=1, 4=1, &4=1, =1, 4=1, ¢=1,é=1, &=1, é=1,&=1,1=1,i=1,1i=1,
i=1,n=1,o=1,¢=1,6=1,6=1,o~1,n=1, =1,0=1,4=1,t=1,%=1,¢=1,£=1,6=1,¢=1,9=1,0=1,®=1,0=1,
™=, =], =1, =1, E=1,0=1,0=1,t=1, s 1 2=1,¥=1,=1,9=1, %=1, [I=1,%n=1,f=1, 2=1, 0=1,Q=1, &=1,
a=1,¢=1,;=1,ﬂ=1 ¢=1 f=1,m=1,A=1, yo=l, =1, =1,A=1,A=1,0=1,G=1,c@=1,-=1,—=1,%=1,"=1,
‘=1,7=1,4+=1,0=1,9=1,%=1,-=1,0=1, <=1, =1, fi=1,fl=1, t=1, +=1,,=1,,=1,%=1,A=1,E=1,A=1,£=1,
E=1,f=1, 1=1, 1= ,I=1,0=1,0-1,d» ,0=1,0=1,0=1,0=1,1=3, "=1, "=1, "=1, "=1, '=1, *=1, ,=1, "=1,
=1, "=1

~

MUParamDisplay p
PO, e30<020)

MUParamDisplay v
20,20,30,20,1,1,0.35,0.67,0.2

MUParamDisplay f
false, false, false,true,true,true,true, false, f

MUParamDisplay m
=~ XA\ =>< [

MUParamDisplay t
30,36,36,36,36,36,30,36, 36,36, 36,36, 30,36,36,36,36,36,30,36,36,36,36, 36,30

Even though the actual parameter information may wrap around several screen lines, it occupies only one
HyperCard line. The single exception to this is MUParamDisplay p, the list of purctuation symbols,
which will occupy two lines whenever the RETURIN character is on the list of punctuation symbols.

8¢

32

B E G Es E

G R R OED R B

= E|E

ERIC

Aruitoxt provided by Eic:

Usually, one collects parameter information to inspect it visually and verify that the parameter values are as
intended. Sometimes, however, the program itself may need 1o access the parameter values. If so, they can
be readily extracted. The fact that each type of information uccupies one line simplifies the process of
parsing out information from the display. The following HyperCard function, which returns the base
character corresponding to a specified input character, will work on either the simple base character or an
aggregate of data like that shown just above.

function findCharBase ch, paramData

-~ PARAMDATA must contaln formatted parameter display information.
-- Return is the base character corresponding to character CH.
== If base info is not in the PARAMDATA, return EMPTY.

repeat with L = 1 to number of lines in paramData
if (line 1 of paramData = "MUParamDisplay b") then

put (line i + 1 of parambata) into bList -- Base char info
put offset(ch, bList) into p
if p>0 -- CH is in the list,
then return char p + 2 of bList -- Every entry has 3 chars.
else return ch -- CH 1s not in 1list, so is its own base char.
end if
end repeat
return empty -- Info on base chars not in data.

end findCharBase

When card field "parameterDisplay" contains the data shown above, calling this function with input
parameter "&"

get findCharBase("é", card fieid "parameterDisplay")
will return "e ", which is the base character corresponding to "¢ v,
Accent information can be parsed out in the same way. Tnformation on case, punctuation, and phonetics of

any given character can be retrieved similarly. The following function is a predicate which will return
True if CH is upper-case and False if it is lower-case:

o)

[oFD]

33

Q

FRICE

PAFullToxt Provided by ERIC
[

function charIsUpperCase ch, paramData
-- PARAMDATA must contain formatted parameter display information.
-- Return is TRUE if CH is upper-case; FALSE if it is lower-case.
-- If case Info is not in PARAMDATA, return EMPTY.

repeat with i = 1 to number of lines in paramData

if (line i of paramData = “MUParamDisplay c") then
put (line L + 1 of paramData) into clList -~ Case info
return (offset{ ch, cList) > 0} -~ Check if CH is on cLIST.
end if

end repeat

return empty -~ Info on case not in data.

end charlIsUpperCase

Assuming the data shown above, this call

get charlIsUpperCase("A", card field "parameterDisplay")

will retumn True.

EXAMPLE 7: USING THE EXACT SPELLING MARKUP

Spelling is a skill which associates with the auditory image of each word a suitable visual image. The
irregularities of English spelling do not in general permit the visual (graphic) associate to be fully predicted
from the auditory form, so a student must often visually encode the conventional graphical icon which
corresponds to each word, paying special attention to those areas of the visual image which are not
predicable from phoneme-to-grapheme rules (Simon & Simon, 1973; Simon, 1975). To facilitate visual
coding, it is important that the student not see incorrectly spellings, since these may be encoded into long
term memory and interfer with the correct coding. To facilitate visual coding it is also useful to focus the
student's visual attention on those areas of the word which have not yet been encoded correctly (i. e., which
were misspelled). The correctSpelling function below returns a display designed to satisfy these iwo
specifications. Incorrect and omitted letters appear as capitals, so that the student can focus attention on
those areas of the word; extra letters in the student's response are replaced by "s", which is relatively
inconspicuous, but warns the student that her visual image was not correct in this region. (This English
example neglects the possibility of capitalization or accent errors.) For example, here are the displays
returned by various misspellings of the word "necessary”:

Response: nesessarey
Display: neCessar*y
Response: neccisary

Display: nec+EsSary

Since the mixture of upper- and lower-case letters is a very unusual image of word spelling, such display
string should probably be further processed in HyperCard so that the upper-case letters are changed to lower-
rase boldface, sized, and perhaps color coded and displayed via 32-bit quickdraw. The missing letter symbol

‘@

34

=

Aruitoxt provided by Eic:

can be further minimized by hilighting the letters on each side of the omission, then deleting the omitted
character to give displays like these:

neCesséI‘y
neC@sS8Sary

Such displays could be useful as feedback in a program that taught spelling by dicating individual words to
students (preterably in the context of a full sentence).

function correctSpelling model, response
global theMarkUpReturnValues

put markUp{(model, response,,,.,,,..,,"r") into markUpString
put item 1 of theMarkUpReturnValues into judgement

if judgment = "False" then
put 1 intom
put 1 into r
put empty into w
repeat with i = 1 to Length{ markUpString)
put char i of markUpString into ¢

if ¢ = *-" then -~ Chars match.
put char r of response after w
add 1 tom
add 1 to r
else if ¢ = "\" then -~ Missing char.
put upCase(char m of model) after w
add 1 tom
else if ¢ = "x" then =-- Extra char.
put "e'" after w
add 1 to r
else {f ¢ = "=" then -- Wrong char.
put upCase(char m of model)} after w
add 1 tom
add 1 to r
else if ¢ = ">" then -- Transposition.

put upCase (char m + 1 of model) after w
put upCase (char m of model) after w

add 2 tom
add 2 to r
else if ¢ = "<" then -~ Already handled at ">",
end if
end repeat
end if
return w

end correctSpelling

i

35

function upCase ¢

-- Returns the upper case version of an alphabet letter C.
-- If C is not a lower-case alphabet letter, return C unchanged.

Lf "a" <= ¢ and (¢ <= "z%)
then return char(charToNum(¢) - charToNum("a") + charToNum("A"))

else return c

end upCase

Since individual words are involved, the MarkUp XFCN is called with the rawTrace parameter (slot 13) set
to "r". This forces the response to be analyzed as a single string, even if there are leading, trailing, or
internal spaces (leading and trailing spaces should be removed by your HyperCard script before the response
is submitted to MarkUp). The raw edit trace is needed here to force a markup to be computed even when the
misspelling is very bad, and because complete information about the misspelling is required to generaie an
accurate spelling correction. The markup characters are then processed one at a time. Whereever the
response contains a missing or incorrect letter, the uppercase equivalent in the model is substituted, and
whereever there is an extra letter in the response, it is replaced by a "" character. When a character in the
model matches the response, then it is shown in lower-case.

TECHNICAL DETAILS AND LIMITATIONS

The most current version of MarkUp (the one documented by this report) is Markup XFCN 3.0 - 19 Dec
94, 8:20PM. To determine the version you have, execute MarkUp () without parameters; a version string
will be returned. The revision history of MarkUp can be found near the beginning of the PASCAL source
file. The MarkUp XFCN is compiled as a THINK PASCAL project containing the following files, in the

DRVRRuntime.lib
Interface.lib
HyperXCmd.p
HyperXLib.lib
MarkUpXFCN3.p

It has been tested on a Macintosh Quadra 700, running under the Macintosh Finder 7.1 and 7.5 and
HyperCard 2.1 and 2.2 launched with 2 megabytes of memory. It should, however, run under virtally any
Macintosh configuration. The user should be aware of the foliowing limitations on the MARKUP XFCN:

Versions through 3.0 will not work properly with 16-bit char representations, i. ., with the
Macintosh language extensions.

Maximum number of letters in a single word: 22

Maximum number of words in model (including synonyms but excluding ignorables): 18

Maximum number of words in response: 18

Maximum number of characters in model: 255

Maximum number of characters in response: 255

These limitations are not intrinsic to the MarkUp algorithm, but are imposed by the fact that the MarkUp
code has to run in the limited space provided by the HyperCard stack. The compiled MarkUp XFCN project
occupies a bit more than 42700 bytes of space; the MarkUp XFCN itself occupies about 22474 bytes.
This is near the limit of the allowed size for HyperCard code resources. XFCNs borrow their space from
the HyperCard stack, so if MarkUp is run in recursive or other deeply embedded contexts, there may not be

&~

B
¥
%
§
§
6
i
§
!
5
i

sufficient stack space. Running the MarkUp XFCN in such a situation wil! cause the stack to overflow
into the heap and will most likely cause a hard system crash type 28 {stack has moved into application
heap), if not immediately, then soon thereafter, or at latest during exit from HyperCard. To guard against
this, the markUpUsingParms() function checks to make sure that there are at least 28500 bytes free on
the HyperCard stack; if not, MarkUp is not run and an error dialog appears. (Since MarkUp's word-order-
error algorithm is recursive, space requried is somewhat sensitive to the number of words in model and
response, but 28500 should be sufficient to run with the maximum of 18 words.) If you call the primitive
MARKUP XFCN, you should first use the HyperTalk function the stackSpace to assure that this much
stack space is available.

To conserve stack space, some large MARKUP array structures have been put into dynamic memory. The
Mac Toolbox functions NEWPTR(and DISPOSPTR() are used to allocate and deallocate this memory,
which amounts to about 24K of space. If this much heap memory is not available, MARKUP aborts and
retumns the error message "%Couldn't get matrix memory."

No formal speed testing was done since, even for maximum length sentences, MarkUp returns without
discemnable delay.

AVAILABILITY

The MarkUp XFCN is freeware. It can ordered on diskette for a handling fee or accessed from FTP.
Contact the author for further information. Copyright of MarkUp resides with the author, but you may use
as a component of commercial or non-commercial software. If you do so, acknowledgment of the author
and the Language Leaming Laboratory of the University of Illinois at Urbana-Champaign would be
appreciated. As freeware, MarkUp is offered as is, without any warranty of any kind. However, if you have
questions or encounter problems in using the package, please contact

Robert S. Hart, Associate Director
Language Leaming Laboratory

University of Illinois at Urbana-Champaign
G-70 Foreign Languages Building

707 S. Mathews Ave.

Urbana, I1. 61801

voice 217)-333-9776
fax (217)-244-0190
email hart@ux]1.cso.uiuc.edu

REFERENCES

Hart, R. (1989) Algorithms for the dynamic identification of spelling and word order errors in student
responses. Technical Report No. LLL-T-15-89, University of Illinois Language Learning
Laboratory, Urbana IL.

Rumelhart, D. & Norman, D. (1982) Simulating a skilled typist: a study of skilled cognitive-motor
performance. Cognitive Science, 6, 1:36.

SN
L

37

38

Simon, H. & Simon, D. (1973) Alternative uses of phonemic information in spelling. Review of
Educational Research, 43, 115-136.

Simon, D. (1975) Spelling: a task analysis. Leaming Research and Development Center Technicai
Report LRDC-1975-3. Pittsburg U., Pittsburg, PA.

e

APPENDIX 1:

LISTING OF MARKUP XFCN

(Sh

39

Q

ERIC

Aruitoxt provided by Eic:

Spelling and word order msrkup utility, Version 3.0
Implemented as HyperCard XFCN in Macintosh THINK PASCAL, Version 4.0.2

Robert S. Hart

Copyright 1993~4 by Robert S. Hart. }

UI/UC Lanqusqe Learning Laboratory

}

13 April 1994

}

Spelling markup done by dynamic programming algorithm which generates a markup
corresponding to a least-cost editing trece.

to omission of a letter,

insertion of an extra letter,

letter for snother, or transposition of two adjacent letters.

Editing operations are restricted
substitution of one

}

Capitalization and sccent errors sre also identified and marked. The user nay
axact

specify the way in which capitalization disagreements will be treated:
agreament required, capital required if the model has one, or capitalizstion

differences ignored. }

Run-together words sre identified as such if they are adjacent in the model.

Some misspelling is tolerated in one or both run-togethers.

Order analysis identifies extrs words, missing words, and misplaced words.
The user can spscify vsrious degrees of tolerance when defining whst constitutes

a match of the model: spelling errors can bo excused: incorrect word order can

be excused, and extra words in the response can be excused.

The order analysis returns three goodness of fit measures:
matched words, proportion of words in correct order, and average amount of

misspelling per matched word. |}

proportion of

when specifying a correct answer, the suthor is allowed to specify one or
more words which will be ignored if they occur in the student's response.

Such a word or list must be surrounded by angle brackets, < >.

A list of

=synonyms" (i.e., a set of words any one of which would be correct at a
given position in a sentence) must be surrounded by square brackets, [}.

LIMITATIONS: |}

Version 3.0 will not «ork properly with the Macintosh lé~bit char representation,
e., with the language extensions. }

1.

Maximum number of letters in a single word:
Maximum number of words in model (including synonyms but excluding ignorables): 18 }
Maximum number of words in response: 18]
Maximum number of cheracters in model: 255
Maximum nunber of characters in response:

XFCN INPUT PARAMETERS: |}

Parameter number and description are show in left-hand colum.. }
Permissible valuas are indicated in the right-hand column.
by asterisk is the default value assigned if the parameter is left eapty. |}

i=
2=
3=
4=
Sm
=
T=
8~
9=
10=
ll=
12=
13=
14=

22

}
255

}

}

model <string of 255 chars, max>
response <stringof 255 chars , max>
cap_flag

extraWordaOX True | *False

anyOrderOX True | *False

nisspellOX True | *False

wordMar kUplieeded *True | False

runTogether_needed
sdjust_needed
shortCut *True | False
markupMapsNeeded True | *False
parameterDisplayNeeded *<empty> | “x*
rawTraceNeeded “<empty> | "x" |
debugNeeded True | *False

*True | False
*True | False

“r

e
“ 1

_p.

“p=

}

}

}

Value preceeded |

g

}

*=exact_csse" | "authors_caps" | "ignore_case"

These HyperCard globel vars may be used to input additlonal informetion:

theMarkUpPunctuation }
theMarkUpSymbols }
theMerkUpwWeights }
theMarkUpPhonMatrix |}
theMarkUpCherlnfo }

XFCN RETURN VALUES: }

{Direct fcn return value):

markup string

Returns in HyperCard globals:

theMarkUpReturnValues :
theMarkupMaps:
theMarkupParanDisplay:

OK/NO boolean, plus other judging flags
markup maps for R-TO-M on line 1, and M-TO-R on line 2
display of the requested judging table values and parameters

46

}

}

}

{1f requested)
{1t requested)

BEST COPY AVAILABLE

o OER G S PR O WN P W B B B S5

Q

r

Aruitoxt provided by Eic:

IC

Page 2
{ theMarkupDebug : display of requestad debugging information }

{ THINK PASCAL Version 4.0.2 project requires the following files ., in this order : |}

{ DRVRRuntime.lib }

{ Interface.lib }

{ HyperXCmd.p }

{ HyperXLib.lib }

{ MarkUpXFCN3.p (this file) }

{ REVISON HISTORY FOR 3.0: }

{ 5 April 94 - RSH |}
{ Fixed problem in WORD_MARKUP which kept spelling marks from being displayed when NOORDERCK was in effect. |

{ 11 April 94 - RSKH }
{ Rewrote MARK_SENTENCE, which would destroy left substring of markup when a word with final missing letter{s) |
{ was followed by a missing word carat. Also rewrote DUP_CHAR for greater efficiency. |}

26 May %4 - RSH |

Fixed DUP_CEAR so that it returns null string when char count {g <= 0. |}

Fixed markup display so that a blank moveword won't shadow spelling markup on fizrst char of word. |}
Edited SET _DIACRIT() initialization so that Swedish &,A are assigned *supero” diacrit. }

27 May 94 - RSH |}

Decoupled internal markup symhols from user-specified symbols to prevent confusions when user specifias }

welrd or ambiguous symbols. Internal symbol nanes begin with S (e. g. *“"Sextraletter®). Also creatad an |}

array SYMBOLMAP to map internal chars to user chars. Transformation to external symbols done in CAPMARK |}

and SPELLMARKS, and SENTENCEMARKUP. Also changed internal display logic so that any user symbol set }

equal to “nomark® (a blank space} will be "transparent® -~ any symbols it normally shadows will appear properly. |}

[16 Sept %4 - RsH |}

{ Rewrote code which computes NED (normalized aedit distance): }

{ Supposedly 0 S NED € 1, but in fact NED > 1 sometimes because normalizing term for RED was based on the “average” |}

{ cost of an edit operation. Now uses maxEditWelght, computed from wchange and the phon_matrix values at time phon_matrix is |
{ initialized. Normalization done on basis of max possible cost to convert a string of responses’s length into one of model's
length. |}
{ Now 0 S NED €1 is guaranteed. |}

{ Rewrote code which converts NED to SNED {integer scaled normalized edit distance): }

{ Small NEDS became 0 when scaled to SNED integers for the sim(] array, because scale factor was too small, so signiflcant }

{ digits remained fractional and were lost in truncation. Mada SIM {] and other variables that hold scaled NEDs into LONGINT }
{ and increased scale factor to 10000 so that even vexy small fractions have an integer representation. Both infinity and |
{ editWeightScale are now constants and are used everywhere. MHaxCost has been eliminated. }

{ Fixed logic error in SPELLMARKS which failed to reset presmption flag and thus dropped all marks after the first |
{ preemptive mark. }

{ Edited Phon Category assignments so that uovper case vowels are counted as vowels as well as lower case ones. |

1 November %4 - RSH)

Moved large 3judging matrix MARKS to dynamic memory so that code would not take so much room on HyperCard |}

stack. Replaced by new ptr MARKSP of type LSMATRIXP which is used to point to a new handle. Handle is disposed }
before exit. }

30 November 94 - RSH }

Fixed error which caused the runtogether word analysis to overwrite pravious matchings, imposing a new bogus |}
match on words which already had imperfect single-word match. Introduced new sets MMAYBE and RMAYBE to keep |}
track of M and R positions which have any kind of match, and used it to make sure that already matched M words }
are not grabbed by the runtogether analysis. Now only M words which have no potential match at all can become |}
candidates es runtogether word match. Test case {s |}

Model: Yosterd he }
Respononse: He yesterd |
Markup: - 3 N}

¥Where “yesterd” has bean interpreted as a runtogether of “"Yesterd he" }
“he® i3 set as ignorable, which leads to a PMATCHED of 4/3 }

{ Also rationalized computation of PMATCHED, which is now #rmatched words/ total ¢ words in M and in R: 1. e.,)
{ 2*MATCHEDK / [(CARD{ M)} ~ CARD{ MIGNORE)} + (CARD(R) -~ CARD{(RIGNORE})] }

{ 20 December 94 - RSH |
{ Edited set_cap_info and set_phon_info in create_char_tables so that Courier upper-case accented vowels would be correctly |}
{ 1identified as upper-case and as vowels. |}

unit markUpXFCN:
interfate

uses
HyperXCmd:

procedure main {paramPtr: XCmdPtr): { FORWARD }

(——— } “

implenentation

. gy

/

BEST COPY AVAILABLE

O

ERIC

Aruitoxt provided by Eic:

procedura main (paramPtr: XCmdPtr);

const

versionStr = ‘Markup XFCN 3.0

leax = 22;

wnax = 18;

word max = wmax + 0;
infinity = 9999;

space = ' *';

spaces = *
editWeightScale = 10000;

{ Intarnal markup symbols

Saddcap = ‘'+°;

Sdropcap = '~': {
Saccenterr = '~'; {
Sextrawd = 'X'; {
Smissingwd = ‘*A‘; {
Smovewd = ‘«*'; { s
Sextraltr = 'x'; {
Smissingltr = *\?; {
Ssubstituteltr = ‘=*;
Stransltrl = *>*; {
Stransltr2 = ‘<*; {
Srunonwd = °*(*; {
Snomark = *'_*;

lattexErrors = (Snomark, Saccanterr,

letter }

type

inputwrange = 1..word_max;

wrange = l..wmax;
lrange = -1 .lmax;
wordstr = string(lmax];
str80 = string(80);

{

- 19 Dec 94, 8:20PM - © Robert S. Hart -

{ max number of letters in a word |}
word_max must be larger than or equal to wmax! }
{ max ¢ positions in model and words in resp after processing |

{ max ¢ of words in model at lnput }

{ WARNING:

}

{ plussign }

downarrow |}
tilde }

captial X 1}
capital delta |

olid leftward arrowhaad |}

small x |}
backslash }

equal sign }

right engle bracket }
left angle bracket }
left square bracket |

{ underscore |}

tut, od*, ‘U, 'D'}: |

wivector = esrey{wrange} of INTEGER;
inputwivectos = array{inputwrange] of INTEGER:
wsvector = array(wrange] of wordstr:
inputwsvector = array{inputwrange] of wordstr;

diacrit_variants = (no_accant, acute, grave, circumflex, diarsis, umlaut, supero,
superhat, subhook, macron):

phon_varianta = (vowel, consonant, phon3, phond, phon§);
cap_flag_type = (exact_case, authors_caps, lgnore_case):
case_verianta = (up_cese, down_case);

wordset = set of wrange;
charrange = 0..255;

wimatrix = arrayi{wrange, wrange] of INTEGER:
wlmatrix = array(wrange, wrange] of LONGINT:
limatrix = array(lrange, lrange] of INTEGER:
lsnatrix = array{lrange, lrange] of wordstr:;

lsmatrixPtr = “lsmatrix;

pmatrix = array(phon_variants, phon_variants] of INTEGER;
clvector = array(CHAR] of INTEGER:

ccvector = arrey(CHAR] of CHAR;

choicelisttype = array(wrange] of wordset:;

solutionrec = record
seq: atr80:;
inversionk: INTEGER:
firstinv: INTEGER:

end;

iset = set of 0..255;

var

p: Ptr;

h, lsmH: handle;

nw,

™,

wordmark: inputwsvector;
rwxloc,

m_to_r,

r_to_m: inputwivector:
runtogether: wivector:
pnoninversions,
pmatched,

cutoff,

prop_errors,
runon_criterion: REAL:
avedist: EXTENDED;

winsert, wdelete, wchange,

(
{

{

{

{

{ vector of model words }
{ vector of response words |}
{ vector of word markups
{ vector of response word locations }
{ response wd matched to given model wd }
{ model wd matched to response wd }
{ index of 2nd run-together model wd }
{ proportion non-inverted words |}
{ proportion words matched }
{ spell check applied 1f length ratin}
of 2 words falls below this value |}
1f edit dist between M and R word}
exceeds this, then round to infinity |}
{ spelling match necessary to consider}
response word as run on }
{ averege edit distance between matched wds}
averaged over all matched pairs }
{ welghts of various spelling errors |}

wtranspose, waccent, wcap, maxEditWelght: INTEGER!

model, response: string:
cep_flag: cap_flag_type;

{ correct ans and student response |}
{ tells how to handle wrong cap letters |}

4¢5

UI/UC Lanquage Learning Laboratory':

Raw markup chars used to indicate casa/accent errors or no error on

cedilla,

Page 3

tilde, subdot, superdot, subhat,

‘i

|
BEST COPY AVAILABLEI |

E

Aruitoxt provided by Eic:

judgedoik, { returns Ok or No for response |}
aisspellok, { judge resp with misspellings Ok }
extrawvordsok, { judge resp w axtra worda Ok |}

anyorderok, { jidge rasp w words out of order Ok }
runtogether newded, { eanable/diaable runtogether analysis }

word_markup_needaed,
adjuat_needed,

{ whether to gehaerate senteance markup |}
{ whather to adjust for optimal soluticn }

Page 14

markupHdapsNeeded, { whaether to return meérkup meps liata to HyperCerd }

shortcut, { whether to shortcut when computing edit distence of very dissimilar words }
trece: BOOLEAN; { eneble/disable tracing output }

paramDiaplayNeeded, { which data atructure info to return to HyperCard }

reawTrace: CHAR?

nomark, addcep, dropcap, { markup synbols }

{ whether aedit trace string returned should be ®“raw® or prettied up for display !}

accenterr, axt .wd, misaingwd, movewd, extraltr, missingltr, substituteltr, transltrl, transltr2, runonwd: CHAR:

delim_chara: sot of CHAR: { punctuation symbols |}
rwlg, rwlg: inputwivector;
nwseaq: inputwivector;
aditd: limatrix;

merkaP: lsmatrixPtrs

a: wlmatrix;

aseq: wimetrix;

rignore, mignore, rmatched, mmetched, mmeybe, mmeybe: wordset:
dr: civector:

synbolMap: ccVector;

cholcas: cholicelisttype;

solutionliat: errey(wrange] of solutionrac;

rlg, nlg, plg, mwk, aclutionk, adit_dist, metchedk, rightmost,
mincost: LONGINT;

runtogatherflag: BOOLEAN;

time: REAL;

{ langtha of model, resp words

{ Judging tablea used to control capitelization/diacritic judging

base_char: array{CHAR] of CHAR:

dlncrit_info: array(CHAR] of diacrit _varlants;
cese_info: arraey(CHAR] of ceas_verients;
phon_info: aerray(CHAR} of phon_veriants:
phon_metrix: pmatrix:

}

{ map of model word index to model position index }
{ matrix of normelized edit distences batween word substrings }

reacursionk, solutions_tried:

}

{ UTILITY PROCEDURES }

{ FAIL)
{ Return ERRMSG a&s the XFCN's return velue, and immedietely exit the XFCN. }
proceadure FAIL (errMsg: 5tr255);
begin
if marksP <> nil then
disposPtr (PTR (marksP));
teranPtr*.returnValue := PasToZero{peramPtr, errMsqg);
EXIT (Main); { exit XFCN |}
end; { FAIL }
{ ReturnInSlobal |
{ Convanience proc for returning string value VALUE in a HyperCard global var GLOBALNAME. 1}
procadurs returnInGlobal (globelNeme, veluae: str255);
ver
h: handle:
bagin
h := pasToZero(paramPtr, value):
if h = nil then
FAIL{concat ('$Qut of memory for return in global ‘, globalName))
alse
begin
satGlobal (parenPtr, globalName, h);
disposHandlae(h)
end
and; { returninGlobal |
{ —— AppendStringToHandle |}

{ Append string S at the end of the informetion pointed to by HANDLE. }

procedure eppendStringToHandle {h: HANDLE; s: string):
var

r: OSErr;

arrType: string(20];

O

RIC

INTEGER;

BEST COPY AVAILABLE

begin

r := ptrAndHand(Ptr(ORD(8s) + 1), h, Lanqth(s)):

if r <> 0 then
begin
case r of
menmfullErr:
errType :» 'Memory Full':
nilHandleErr:
errType := ‘NIL handle':
nemWZErr:

errType := 'Mem block is free'

end;

FAIL({(Concat {'SAppendStringToHandla arror:

end;

and; { appendstringToHandle |}

', errTypa))

Page 5

procadure appendstringToGlobal (gName: str255;

var
h: HANDLE:
l1g: INTEGER:
hp: PTR/
begin

h := getGlobal (paramPtr, gName):;
lg := GetHandleSize (h):

hp := PTR(ORD(StripAddress(h~)) + lg - 1):

1€ (1g > 0) & (hp* = 0) then {
satfiandleSizeth, 1lg - 1); {

appsn'‘StringToHandle(h, concat(s, CHR(0))):

setGlobal (paranPtr, gName, h}:
disposeHandle(h);
end;

str255);

Ptr to last byte of block. |}

If handle i3 non-nil and has null char terminator, |}
remove null char terminator. }
Append string plus null char terminator. }

AppendStringToGlobal }

function NtoS {num: INTEGER): str255:

begin
numToStr (paramPtr, num, NtoS):
end; { NtoS)

NtoS |}

function LtoS (lng: LONGINT): str255;

begin
longToStr (paranktr, lng, LtoS):
and: { Ltos |}

Ltos }

function EtoS (r: REAL): 8tr255;

begin
extToStr (paramPtr, r, EtoS):
end; { EtosS |}

EtoS |}

function BtoS (b: BOOLEAN): str255:

begin

if b then

BtoS := 'True*
else

BtoS := ‘False’
end; { Btos }

function satToString (st: lsat): str255;

ver
i: INTEGER:
8: 8tr255;

begin
s 1=t
for { := 1 to 30 ao
1f { in st then
s := concat(s, 'l,*)
alase
s := concat(s, '0,');
setToString := s;

O

ERIC

Aruitoxt provided by Eic:

setToString |}

BEST COPY AVAILABLE

N |

Page 6
end; { setToString |

ﬁ Convenience function to return case-insensitive equality of two strings }
function eq (sl, s2: str255): BOOLEAN:
% begin

eq := stringEqual (pararmPtr, sl, s2
end; { «q }

{ NthChunk }

Return the Nth chunk of string S, whére a chunk 1is a substring lying between |}
two DELIM characters {(beginning & end of S are inplicit delimiters). }

function nthChunk (s: str255; n: INTEGER; dchar: CHAR): str25S;

var
i, p: INTEGER;
delim: string;

begin
delim := dchar:
for { := 1 ton ~1do { remove first n - 1 chunks from string |
begin

P := posi{delim, s);
if p > 0 then
delete(s, 1, p)

else { 1f less than n-~! chunks, return EMPTY }
begin
nthChunk := '1;
EXIT {(nthChunk)
end
end; . '
P := pos(delim, s); { Nth chunk is now at front of list }

if p > 0 then

nthChunk := copy(s, 1, p - 1)
else

nthChunk := s;

end: { nthChunk)

{ Inc }

procedure inc (var x: integer);

begin
X = x + 1;
end; { inc)
{ Dec |}
procedure dec (var x: integer);
begin
X = x - 1;
end; { dec }
{ Max |
function max (x, y: INTEGER): INTEGER:
begin
if x > y then
Bax = X
else
max =y
end; { max }
(Max)

function min {x, y: INTEGER}: INTEGER:

begin

if x < y then

min := x
else

min := y
end: { min }

=—--~Dup_Char |

function dup_char (c: CHAR; lg: INTEGER): string:

var
1: INTEGER;
s: string;

cri
)

—

Q

ERIC BEST COPY AVAILABLE

Page 7

bagin
if 1g <= QO then
begin
dup_char := '*;
EXIT (dup_char):
end!
1f (lg > 255) then
lg := 2555
s = C;
for 1 := 1 to 8 do
if length{s) < lg then
1f length(s) >= 128 then
s := Concat (s, Copy(%, 1, lg -~ length(s})))
alse
a := Copy(Concat(s, s), 1, 1lg)
elsa
begin
dup_char := s;
axit (dup_char)
and;
and: { dup_char |}

{ Card |}
{Compute the cardinality of a set of type 'wordsat'.}
function card (setofwords: wordset): INTEGER;:

var
1, k: INTEGER:

begin
X = 0;
for 1 := 1 to wmax do
if (1 in satofwords) then
Inc(k):
card := k;
end; { card }

{ }
{ DEBUG I/O }

{ ShowSat }

procedure showset (s: string; st: lset):

begin

appendstringToGlobal (‘theMarkUpDebug', concat (s, * = ', setToString(st), CHR(13}))
and;

{ See_nedit_matrix |}
procedure see_nedit matrix (s: str25S):

var
m, r: INTEGER:

begin
appendstringToGlobal {'theMarkUpDebug', concat (CHR(13), ‘A[(R,M] : ', s, CHR(13)));
for r := 1 to rlg do
begin
s im tl;

for m := 1 to mwk do

s := concat(s, LtoS{a(r, m]), * '):
appendstringToGlobal {'theMarkUpDabug', concat ('R=', NtoS{r), ' °*, s, CHR{13))):
end
end; (see_nedit matrix }

{ DISABLED I/0 |}

procedure pause;
begin

{reedln:}
end;

procedure clrscr:

bagin
end;

{ INITIALIZE ALL STATIC DATA STRUCTURES ~~ JUDGING TABLES AND PARAMETERS. |

Q I<
BEST COPY AVAILABLE

Following procedures disabled because MAC code resources cannot hava standard I/0 } l
' ;

Page 8

{ Get_char_case |}
function get_char_case (i: INTEGER): case_variants;

begin

if Char(i) in ('A'..'2Z*'] then

get_char_case := up_case
alae

get_char_case := down_case
end: { get_char_case)

(Force_down_case !
function force_down_case (i: INTEGER): CHAR:

begin
if get_char_case(i) = up_case then
force_down_case := chr((ORD('a') —~ ORDI‘A*}) + 1)
eloe
force_down_case := chr(l);
end: { force_down_case |}

{ Set_base_info)
procedure set_base_char (c: CHAR; s: str80):

var
i: INTEGER:

begin
for { := 1 to lLength(s) do
if s(1} <> space then
base_char(s(i]] := c;
end; { set_base char }

{ Set_dlacrit_info }
procedure set_diacrit_info (d: diacrit_variants; s: strs0);

var
1: INTEGER:

begin
for { := 1 to Langth(s) do
1f s(1] <> space then
diacrit_info(s(l]} := d
end; { set_dlacrit_ info |}

{ s

et_cap_info
procedure set_cap_info (c: case_variants: s: str80):

var
1: INTEGER:

begin
for L := 1 to Length(s} do
if s(i} <> space then
case_info{s(i]] := ¢
end; { set_cap_info }

{ Set_phon_info)

procedure set_phon_info (p: phon_variants: s: str80);

var
1: INTEGER:

begin
for { := 1 to Length(s) do
1f s(1] <> space then
phon_info{s(i]] := p
end: { set_phon_ info |}

(Create_char_info_tables |
{ Initialize all character information tables. These tables provide |

{ descriptive information about each of the 255 characters in the Mac }

{ character seat used for the model and response.}

Global data structures affected:}

base_char : vector specifying the base (unaccented) char corresponding}
to each char.}
diacrit_info : vector specifying the type of diacritic mark which}

modifies each char}
case_info vector specifying the case (upper or lower) of each char.}
phon_info : vector specifying whether each char is vowel or consonant.}

L
Q JI

BEST COPY AVAILABLE

O

ERIC

Aruitoxt provided by Eic:

{

procedure create_char_info_tables:

var

i, lineNo: INTEGER:
c: CHAR;

s: strd0s

str: Str255;

h: hendle:

begin |{ create_char_info_tables |}
for 1L := 1 to 255 do
begin
c := CHAR(1);
base_char(c] := CHAR(force_down_case(i));
case_info{c] := get_char_caso{l);
diacrit_info(ec] := no_accent:
phon_infa(c] :=~ conscnant
end; { DO }
Replace base_char default value for accented chars. Chars with accents heve)
the unaccented version as base cher. Uneccented chars have themselves as base |
char (this is the default case). }

NOTE: These settings assume that the font is COURIER or some compatible font!! |
They may not display properly here in a font other than courlar. 1}

set_base char('a', '4 A A AdALA&RAXAY:;
t_base_char('e', ‘& £ ¢ E & £ & £);
t_base char(fi*, ‘'S I L 1 21§ 10y,
sot_base_char('o’, '4 0060686060 80'):
set_bage _char{'u', ‘@ U2 00 04 0);

set_base_char('y', '¢ 2'):

set_base_char{'c’, 'c ¢');

set_base_char('n’', '4A R');

Enter propsr diacritic information for accented chars. Unaccented chars have)
“no_accent® as their dlacritic. Accented chars are assigned the proper accent }
mark. These settings assume COURIER font, and may not display properly in |}
another font, |}

sat_diacrit_infolacute, '&4 A & £ £ 1 60 ¢ 0);

set_diecrit_infolgrave, 'd A 4 B L 1 6 0 0 0

set_diacrit_info{circumfiex, '3 A d £t 1 3000

sat_diacrit_info(diarsis, ‘4 A& E L 1 8000 ¢ ¢);

set_diacrit_info(supero, ‘& A'}:
set_dlacrit_info(cedilla, ‘¢ ¢'):
set_diacrit_info(tilde, ‘A R & A 80"

set_diecrit_info(macron, '*): { IBM PC had some nacron chars)]

Enter case info for upper case accented letters. Thil supplements the default }
assignment of “"upper_case® to A..Z. - COURIER font.

set_cap_info (up_case, 'AEIOUXB!OUQRBIOOXOKBIOOAEQQNC‘),

Set phon info for vowels, This overrides the default setting of “consonant™. }

Specify both upper and lower case, separately for chars with dlacrits. - COURIER font. }
sat_phon_info(vovel, 'a e 1l ouy AETI 0 oY & - = a').
set_phon_info{vowel, '4 & { 64 A 8 101 ¢ 4 () L2a1d40
set_phon_info(vowel, ‘AE {1 OGAEIOU0 Y A 0 CAOAR OO

0y,
H

)
AEco):

Set cap info for accented chars -~ COURIER font |
end; { create_char_info_tables }

{

QverrideCharinfoTables |}
Take a line of char info specs and install them in the proper char info table.)
procedure overrideCharinfoTables {specs: Str255);

var

1, n: INTEGER:
switch: char:

d: diacrit_variants:
c: case_variants:

p. q: phon_variants:
s, ch: Str255;

begin
switch := specs(1): { Specifies type of info. |}
delete (specs, 1, 2); {leading char and following comnal
1 :» pos{*,', specs):
if § = 0 then
FAIL(Concat (‘tMissing comma after switch in judging table line: ‘', specs));
ch := Copylspecs, 1, 1 -~ 1); { Specifies base char or variant value for following list. }
if ch = '* then
FAIL('sMissing base char or variant specifier.'}):
delete{specs, 1, 1i};
case switch of
the s { base char |}
set_base_char(ch, s):
'd': { diacritic information }
begin
1f eq{ch, 'acute') then
d :~ acute

y
6N

Page 9

2 R G PR O M B N O R ER R SR R 2 R

Aruitoxt provided by Eic:

else if eql(ch, 'grave') then
d := grave
else 1f eq(ch, ‘circumflex') then
d :» circumflex
else if eq(ch, ‘diarsis') than
d := diarsis
else if eq(ch, ‘supero’) then
d := superc
else if eqich, ‘cedille') then
d := cedilla
else if eq(ch, ‘tilide’) then
d := tilde
else if eqlich, ‘macron’) then
d := macron
else
FAIL (Concat ('4Bad diacritic variant value: *, ch));
set_diacrit_info(d, s);
end;
‘e { capitalization information |}
begin
Lf aq(ch, ‘up_case‘') then
c := up_case
else 1f eq(ch, ‘down_case') than
c := down_case
else
FAIL{Concet (*%Bad cap variant value: ', ch, ! ', specs)};
aat_cap_info(c, 3):
end;
pre { phon information |
begin
if eq(ch, *‘vowel') then
P := vowal
else 17 eqlch, ‘'consonant') then
P := consonant
else if eq{ch, ‘phoni‘') then
p := phonl
else {f eq(ch, ‘phond') then
P := phont
else if eq(ch, *‘phonS5') then
p := phond
else
FAIL(Concat (*sBad phon variant value: *, ch)};
set_phon_info(p, 3);
and;
otharwise
FAIL (concat('sBad judging table switch: *, switch)):
end; { CASE switch OF }

end; { overrideCharinfoTables |}

Set values for program paramaters and data structures. |}
First look to see 1f values hava been provided in these 5 global variables:)
theMarkupPunctuation }
theMarkupSymbols]
theMarkupWelights }
theMarkUpCharInfo }
theMarkUpPhonMatrix }
If so, process those values to set the data; otherwisa use default values. |}

prucedura init _markup;

SetDelimiters)

Speclfy characters which will serva a3 punctuation in modal and response. }
If thera are cdata in the global variable *‘theMarkupPunctuation', use thar. }
Otherwise, set values below as default values. }

Chr(13) is MAC/HyperCard RETURN char, which starts new line. }

procedure setDelimiters:

var

h: handle;
s: Btr255;
i: INTEGER:

begin

h := getGlobal (paramPtr, ‘theMarkupPunctuation’);
zeroToPas (paranPtr, h*, 3);
disposRand) e{h):

if 3 = '* then
dolln_char: F T I e L T e e N N N L PP T T Y Y
else
begin
delim _chars := []:
for 1 := 1 to Lengthis) do
delim_chars := delim_chars + (s[i}}:
end

0D

BEST COPY AVAILABLE

Init_markup |}

Chr(l13))

Page 10

Page 11
end; (setDelimiters }
{ SetSynbols |}
{ Specify characters which will serve as punctuation in model and response. b
{ 1f there are data in the global var ‘'theMarkupSymbols', use them. }
{ Otherwise, set default values balow. }

procedure setSymbols;

var
h: handle:
i: INTEGER:

Ss, s: 3tr2sSs;
begin

h := getGlobal {(paramPtr, ‘'theMarkupSynbols'):
zaroToPas (paramPtr, h”, s);
disposHandle(h):

if 3 = '* then
begin
addcap := ‘'+'; { uparrow }
dropcap :™ '-'; (downarrow |}
accenterr = ‘~'; (tilda }
(
{

extrawd := *'X*; capital X }
missingwd := 'A%, capital delta |}
movewd := ‘'«’; { solid leftward axrowhead |
extraltr := 'x'; { small x }

missingltr := **; { backslash }
substituteltr := ‘e!; { equal sign }
trsnsltrl := '>'; { right anqle bracket }
transltr2 := *<‘; (left angle bracket |}
runonwd := *[*'; { left square bracket |}
end

else

begin

addcap := s[l1l];
dropcap := 8([2)?
accenterr := s(3];
extrawd := s({d];
missingwd := s(5]);
novewd := s({6];
extraltr := s8(7];
misaingltr := a(8}:
substituteltr := s[9]:
transltrl := s{10};
trsnsltr2 := s[ll];
runonwd := 8{12};
and;

a := concat (addcap, dropcap, accanterr, axtrawd, missingwd, movewd, extraltr, missingltr, substituteltr, transltrl, transltr2,
runonwd);

Ss := concat(Saddcap, Sdropcap, Saccenterr, Sextrawd, Smissingwd, Smovewd, Sextraltr, Smissingltr, Ssubstituteltr, Stransltrl,
Stransltr2, Srunonwd):

for L := 1 to Length{Ss) do

syrbolMap(Ss(i}} :~ s(i}:

nomark := space;

symbolMap(Snomark] := nomark:

end; { setSynbols }

{ Set_judging_tables |}
procedura set_judging_tables:

var

h: handle;
p: ptr:
8: 3tr255;

begin

{ First, initialize all judqging tables with default values. |
create_char_info_tables;

{ Override dafsult values with user-specified values in THEMARKUPCHARINFO. |}
h := getGlobal (paranPtr, ‘theMarkupCharinfo'):
;:;:H:ndln (h):

while True do

begin
while p* = 13 do { If at CR, move to next char }
p := PTR(ORD(p) + 1): [If line i3 empty, skip over it.}
1f p* = 0 then { If at end of string, exit. }
LEAVE!

ERIC

Aruitoxt provided by Eic:

returnToPes (peramPtr, p, 8); { If real line, get it |}
overrideCharinfoTables(s); { and instell its values. }
scenToPaturn (peranPtr, p); { Move to the next CR |

end;

end; { set_judging_tables |

Set_phon_metrix |}

Specify cheracters which will serve as punctustion in model end response. }
If there ere date in the global var ‘theMarkupSymbols', use theam. }
Otherwise, set default velues below. 1

procedure set_phon_matrix;

h: handle;

8: 8tr255;

P, q: phon_verlants;
i, w: INTEGER;

bagin

h := getGlobal (peramPtr, ‘theMarkUpPhonMatrix');
zaroToPas (paranPtr, h*, 8):
disposRandlae(h);

if s = *'* then
Put default values into the substitution welgh matrix, pmatrix. |
For a given cell PHON_MATRIX(M, R], M is the phonetic category of a model }
cherecter MC end R is the phonetic category of a response charecter RC. |}
The integer value in the cell is the weight attached to substituting RC for MC. }
The defeult vslues below equel to WCHANGE if MC and RC are in the same category; }
if they are in different categories, the ccst of a sustitution is 1.2 times WCHANGE.
begin
for p := vowal to phon5 do
for q := vowel to phon$S do
if p = q then
phon_matrix(p, g) := wchange
alse
phon_matrix{p, q) := TRUNC(1.2 * wchange):
naxEditWeight := TRUNC(l1.2 * wchange):
end
else

{ If the HyperCard globsl THEMARKUPPHONMATRIX is not empty, read values from it. |}

begin
naxEditWelight := wchenge;
1 =1y
for p i:= vowel to phon5 do
for q := vowel to phon5 do
begin
¥ := strToNum (paramPtr, nthChunk(s, i, *,'});
phon_matrix(p, q} = w;
maxEditWelght := max (nexEditWelght, w);
inc(l);
end
end:

end; { set_phon_matrix |

£
- :
r[P{lc

Aruitoxt provided by Eic:

SetWeights |

Specify welghts and thresholds which control spelling analysis. }

Values must be contained in the global var THEMARKUPWEIGHTS, end }

must eppear as comma-separated items, in this order: }

winsert, wde e, wchange, wtrenspose, cutoff, prop_errors, runon_crlterion }

If any of these items is EMPTY, e default value will be used. If THEMARKUPWEIGHTS
does not exist or is empty, all defsult velues will be used . }

procedure setWelghts:

vVar
h: handla:
v, B: 8tr255;

begin

These are the default welghts assigned to the various edit operations, chosen so
that the cost of & change 1s less that that of a deletion followed by an insertion.
Also, the cost of a chenge, or of a deletion/inserticn sequence is greater than |}
thet of e trensposition. The “stenderd® distances of 2,2,3,2 have been multiplied
by 10 so thet accent and cap errors can be scored et a lower velue. }

winsert := 20;

wdelote := 20;

wchange := 30;

wtranspose := 20;

waccent := 1;

wcap = 1;

Ratio of word lengths must be nearer than this to 1 or the edit distance between
then will be eutomatically set to infinity (used only when 'shortcut' is TRUE).

)
é

1

}

Page 12

O

ERIC

Aruitoxt provided by Eic:

cutoff := 0.67:

This peremeter controls the proportion of spelling edits which cen occur when }
attempting to match two words before the two words will be considered non-metches. }
prop_errors := 0.35;

This is the max normelized edit distance which cen exist between 2 model words = + mnm }
end e response vord r before r can be considered to be m and mm run togethar. }
runon_criterion := 0,2

Override the defaults with velucs in global veriable THEMARKUPWEIGHTS. |
h := getGlobal (peramPtr, ‘theMarkupWelghts');

zerocToPas({paramfPtr, h*, s);

disposiandle(h) z

if 8 <> *'* then
begin

v := nthChunk({s, 1, *,*):
1f v <> ** then
winsert := strToNum{paramPtr, Vv);

v ;= nthChunk(s, 2, *,*);
1f v <> ** then
wdelete := strToNum(paramPtr, v}/

v := nthChunk(s, 3, *,*):
if v <> *' then
wchenge := strToNum{paramPtr, v);

v := nthChunk(s, 4, *,*}:
if v < '* then
wtranspose := strToNum(peranPtr, V);

v := nthChunk(s, S5, *,*)?
1f v <> ** then
wcep := strToNum (paramftr, v);

v := nthChunk(s, 6, *,');
1f v <> '* then
weccent := strToNum({paramPtr, v):

v := nthChunkis, 7, *',');
1f v <> '* then
cutoff := strToExt (peramPtr, v):

v := nthChunki{s, 8, *',*'):
if v <> '* then
prop_errors := strToExt (paremPtr, v};

v := nthChunk(s, 9, ','):
if v <> ** then
runon_criterion := strToEat (paramPtr, v);

end?

end; |{ setWeights |}

begin { init_markup }

Specify cap, eccent, vowel, end base-char propertias of chars. }
First set defeults, then look for values in global vers. }
set_judging_tebles;

Specify which input chers will serves as ‘punctuation’ (word deliniters).)
setDelimiters;

Specify which symbols to use for merkup displey. }
set Symbols;

Set numericel weights end thresholds which control judging process.)
setWeights?

Set values in PHON_MATRIX, which determines substitution cost for verioius |}
combinations of cheracter categories. Also computes mexEditWelght. }
set_phon matrix;

end: { lnit_markup }

INPUT PARSING 1

-==)

——— Segment _string |}

Wy

ERIC

[/ num Provided by ERIC

{

Page 14

Process the model (correct answer).string and the (student‘a) response strings }
and puts tham {nto snh iniarnal format sultable for further procesalng. }

String is segrented into words and the total number of words, as well as the }
length of aach word, is recorded. While breaking out individual words, all }
extraneous characters ~-- extra spaces and punctuation -=- are discarded. }

If string is a model, the special syntax of ingorable words and synonyms is }
interpreted, and a list (in set format) of ignorable word poationa is bullt, }
as well as information on which words are synonyms and which sequential)
position each words occupies in the ssntence. All the synonyns in a group }
share the same sequential position. }

Special syntax for correct answer: ignorable words are placed within angle }
brackets, and synonymous worda within square brackets, eg: }

The quick < brown > fox [jumped leaped | over tae < lazy > dog }

Input vars: }

[: string to be processed (correct answer or response) }

ismodel : True if string is a correct answer; false if {t is student response.)

Return vars: t -
wk : number of worda }

w : vector of words (strings) }

wlg : parallel vector of word lengths {char counts) }

waux : If string ia model, }

position nunber of each word (all the synonyms in a list share the }
same postion number), or, }
1f string is response, }
column location of leftmost letter of each word (entire response }
{s assumed to be on a single screen line.) }
mignore : list (in set format) of word sequence numbers to ignore }

procedure segment_string (var wk: INTEGER; var c: string; var w: lnputwsvector: var wlg, waux: inputwivector; ismodel: BOOLEAN);

var

1, p, position, lg: INTEGER:
x: wordstr:

syn_list, ignore_flag: BOOLEAN:

begin

c := concat{c, ' '):

lg := Length{c):

wk := O;

position := 1;

syn_list := False: { Turn on when processing synonym list.]
ignore_flag := False: | Turn on when processing ignorable word list. }

if {smodel then
nignore := []:

Take succesalve chars from string to build next word. If word has become too)
long, set error flag and exit.)

1L :=1;
while { <= 1lg do
begin
X = '
Hol ¥

while (1 <= 1g) and not (c(i] in delim_chars) do

begin

x :« concat(x, c(i]}:
Inc{i)
end;

If word not null, then update word count, word vector, word length vector. }

if x <> ** then

begin

If sentence would heve more than the allowable number of words, or if the }

current word is too long, set arror flag and exit. }

if (wk + 1) > word_max then

FAIL('SToo many words in input.'):

if Length(x} > lmax then
FAIL(concat('NInput word too long: °*, x}):
Inc{wk) ;

wiwk] := x;

wlg[wk] := Lengthix):

If string i{s model, also update synonym list, ignorable word list, and map }

of model word numbers to model positions. }

if ismodel then
begin
if i{gnore_flag then
nignore := mignore + [position]:
waux(wk) :« position:
end
else
waux([wk] := p;
if not syn_list then
Inc{position):
end;

Process delimiters tralling at end of word, i{ncluding ignorable and synonym list]
delimiters. 1If one of the latter is encountered, set or clear the appropriate)
flags. }

whila (1 <= 1g) and (c(i} i{n delim_chars) do

2%

T

BEST COPY AVAILABLE

O

ERIC

Aruitoxt provided by Eic:

begin

if ismodel then
cese cfl) of

e

syn_list := True:
l]l:

begin

syn_list := Felse:
Inc(poeition):

end;

L

ignore_fleqg := True:
I>D:

ignore_flag := False;
end; (CASE)

Incii);

end; { WHILE (4 <= 1g) AND (c[1) IN delim_chars) }

end; { WHILE i <= 1lg) }
Clean-up code for end-of-string condition.

cese lsmodel of
True:
if position > wmax then

If nunber of response words laess 1, }

or number of positions in model, exceeds the dimension of the (squere} sim)
matrix, the set error fleg and exit. Otherwise store the number of positions in }
the model, if string is model, or the column nunber of the first cherscter }
beyond the end of the response (used later for markup}. }

FAIL('%Too many word positions in model.®)

else
plg := position - 1;
False:
if (wk + 1)} > wmax then
FAIL{*sToo rmany words in input.‘)
else
waux{wk + 1] := Length(c} + 1:
end; {CASE}

end; { segment_string }

procedure segnentModel:

var
i: INTEGER:

begin

for L i~ 1 to word_max do

mwil] = tee;

segrent_string (mwk, model, mw, mwlg, nmwaeq,
end; { segmentModel }

SegmentModal |

True}:

procedure segmentResponse:

var
i: INTEGER:

begin
for L := 1 to word max do
“[i] LR AN}

q tResponse }

segment_string (rlg, response, rw, rwlg, rwxloc, False);

end: { segnentResponse)

procedure setModel (s: string):

begin

model := 8;
segmentModel;
end: { setModel |

SetModel }

procedure setResponse {s: string):

begin
response :® 8;
segmentResponse;
end: { setResponse)

SetRasponse

{ SPELLING ANALYSIS }

- Init_spelling

v

}

}

Page 15

Initialize all matrix d&os structures used by the dynamic prograxming algorithm }
which generates s “nearest match®™ misspelling msrkup. These data structures }

sre all global. The (global) vars affected are: }

editd : mstrix of (minimal) edit distancea)

marks parallel matrix of (minimal} merkup corresponding to each edit distance.

procedure init_spelling (var aarks: lsmatrix);

var

i: INTEGER;

beqin
editd(0, 0] := 0;
marks(0, 0] := *?%;
for 1 := -1 to lmax do
begin
marks(i, =1} := **;
marks(-1, i} := v;
editd(i, =1} := infinity;
editd(-1, 1] := infinity;

end;

for 1 := 1 to lmax do

begin
aditd(l, 0] := editd(i =~ 1, 0] + wdelete:
editd(0, 1] := editd(0, 1 ~ 1] + winsert;

marks({i, 0] := concat(marks(i - 1, O], extraltr):
marks(0, 1] := missingltrs
end;

end; { init_spelling }

{ CapMark |}

Return System markup char for capitalization and/or accent error. Character M, |}
assured to be from the model, is compaired to character R, assumed to |}

be in the student's response. If R has both a cap error and an accant }

error, the cap error takes precedenca. }

function capMark (m, r: CHAR)}: CHAR;

var
mcase, rcase: case_varlants;
mark: CHAR;

begin

mcase :=~ case_info(nm]:
rcasa := case_info(rj;
mark := Snomark; { Default i3 no m~rk }
1f (cap_flag <> ignore_casa) and (mcasa <> rcase) then
case cap_flag of
exact_case:
if rcase = down_case then
nmark := Saddcap

else
mark := Sdropcap:
authors ps:

if mcase = up_case then
rmark := Saddcap:
end; {CASE]

i1f (mark = Snomark} & {diacrit_infoim] <> diacrit_info(r]) than
mark := Saccenterr;
capMsrk := mark;

end;

{ capMark }

{ AccentError |

Conpalir the two chars ¥ and R. Assign score WCAP for a cap error, WACCENT for |}
an accent error, and return the total score. C reaturns the type of error(s):

The datailed info is useful only for return to user when raw markup string is raquested;
CAPMARK regenerates it during word markup. 1

function accentError (m, r: CHAR; var c: CHAR): INTEGER;
var
errK: EFTEGER:

begin

{ See if cases match. |}
if (case_info(m] = csse_info(r]) |
begin
errK :» 0;
c := Snomark {
end
else
begin

(cap_flag = ignore_case) |

No case err }

‘El{lC

Aruitoxt provided by Eic:

{ If case i3 ignored or ok, or user's case mark is blank, then check to see if accents match.

Page 16

Snomark for none, }
‘u* and 'd' for case error only; '~' for accent error only; ‘U' and 'D' for both case and accent error. |

]

({cap_flag = authors_caps) & (case_info(r] = up_case)) then

BEST CGPY AVAILABLE

errX := wcap;
if case_info(m] = up_case then

c = tu! { Case error |
else

c = 'de; { Case error }
end;

{ Also check to see 1f accents match. |}
if diacric_info(m] = diacrit_into[r] then
accentError :» exrX
else
bagin
accentError := errX + waccent;
if ¢ = Snoxark then

C := Saccenterr (Accent err only |}
else if ¢ = *u' then

c = ‘Q

else

c = 'D* { Case and accent err }
and;

end; { accentBError }

and generates the case/accent markup, if any:; (b)

indicator of properly matched letters. }

const
preamptives = (Smissingltr, Srunonwd};

var

1, 3, k: INTEGER;
mc, usermark: CHAR:
preempted: BOOLEAN;
markup: wordstr;

begin
1 :=0;
= 0s

preenpted .= False;
narkup = *'°';

for Xk := 1 to Length(marks) do

usermark := symbolMap{me}:
if not preempted then
if (mc in preemptives) then
if (usermark = nomark) then
proempted := False
else
begin
presnpted := True;
markup := concet (markup, usermark):;
end
else
begin
presmpted := False;
markup := concat {markup, usermark):
end
else

{ If preemption is on, skip current markup char, but turn off preemption to eccept successive ones. |}

precmpted := False;
end; (FOR}
spelimarks := markup

end; { spellMarks |

O

ERIC

Aruitoxt provided by Eic:

SpellMarks |

Converts the “raw"™ spelling markup returned by the least-—distance algorithm to }
a markup suitable for display: (a) When two letters match, checks case/accent }

reduces a sequence of omission marks,

=\", to a single omission mark; (c} supresses any markup of letter following an }
amission, zince the omission marker "* occupies the space beneath the next }
character following the omission:; {d) substitutes a blank space for "-" as an }

function speliMarks (var marks: wordstr; var m, r: wordstr): wordstr;

begin

Inc{i):

Inc(3):

mc := merks{k};

if mc in letterErrors then { case or accent or no error }
mc := capnark(m({i]}, r(3}) { system error char }

else if (mc = Sextraltr) then
Dec (1)

else if (mc in preemptives) then
Dec () ;

{ If the user symbol for missing wd or runtogether is space, do not preempt spelling mark.

Page 17

Page 18

{ Nedit_dist }

Computas normalized minimal spelling edit distance between two strings R and M and }
{optionally) the markup string which corresponds to that edit distance. }
Input vars: }

{

{

{

{ 4 : Single word from response string }

{ n : Single word from model {correct answer) 1

{ markflag :TRUE if markup corresponding to edit distance is to be returned: }
{ FALSE 1f no markup string needed. }

{ shortcut :TRUE 1f words of too different length will be given distance infinity: |
{ FALSE if exact distance must be computed. |}

{ Return vars: }

{ markup : Markup string {if requested]. }

{ nedit_dist : Normalized edit distance { betweaen] and 0 }. }

{ edit_dist : (GLOBAL var) : waeighted, unnormalized edit distance. 1

function nedit_dist (var r, m, markup: wordstr; marks: lsmatrix; markflag, shortcut: BOOLEAN): REAL:

var

i, J, flag, x, x2, x3, x4, d, nl, rl, db, 11, 3J1: INTEGER:
ratio: REAL:

¢, lastc, mc, rc, mk: CHAR:

t: wordstr;

beqgin
runtogetharflag := False;

{ If doing standard order analysis, handle scne special cares. |
{ If raw trace was requested , go directly to produce minimal trace. }

if rawTrace = °*x' then
begin
{ If the two words match exactly, return adit distance of 0. }
if m = r then
begin
nedit_dist := 0;
edit_dist := 0;
markup := *°';
EXIT (nedit_dist);
end:;
ml := Longth(m):
rl := Length(r):
{ If word lengths vary too much, and shortcut flag is set, skip further }
{ analysis and return infinite edit distance. }
if shortcut then
begin
if ml < rl then
ratio := ml / rl
else
ratio :~ rl / nml:
if ratio < cutoff then

. begin
nedit_dist := infinity:
eadit_dist := infinity:

rarkup = **;
EXIT (nedit_dist)

and:

end; { IF shortcut }
end
alse { rawTrace = 'r*' or 'p'. |
begin

rarkup = '';

ml := Length{m):
rl := Length (z):
end:

{ Otherwise, compute the edit distance between the two words using dynamic }

{ programming algorithm expressing recursive relation between left substring |}

{ distances. This is a form of exhaustive search, implemented here by iteration }
{ rather than true recursion . }

{ Initialize temporary memory array. }

{ dr(ch] will store location in resp where char ch last appeared. |
for L := 1 to 255 do
dr(chr(i}] :w 0;

{ Main loops to fill matrix of substring edit distances. }
for 1 := 1 to rl do
begin
db := 0

for § :~ 1 to ml do
begin

ne = m(j);

re := r(i]:

i1 := dr{base_char(mc]): {last occurence of mc in resp|

i1 db; {last matched char in model!}

{ Check for identity or substitution of end chars in each string. }

1~ e

ol
—
@)

BEST CGPY AVAILABLE

Aruitoxt provided by Eic:

O

ERIC

Aruitoxt provided by Eic:

if mc = rc then

begin

d := Q; (dist betwaen chars mc and rc}

db := 3; {model position of last metched char}

mk := Snomerk;

end

else if baae_char(mc] = base_char(rc] then

begin

d := accentError (mc, rc, mk); (return d and mk, is in _~udUd }
db := 3;

end

else

begin

d := phon_matrix(phon_info(mc}, phon_info(rc}]; { subst dist for type mc and type rc!
mk := Ssubstituteltr;

end;

{ Find cost of matching via omission, insertion, substitution, and transposition. |
x := aditd(L -1, § - 1) + d;
x2 := editd(i - 1, j) + winsert;
x3 := editd(i, j - 1] + wdelete:

x4 := editd(il -~ 1, 31 = 1) ¢ (1 ~ 11 = 1) * wdelete + wtranspose + (j ~ j1 -~ 1) * winsert;

{ Select the match which ylelds least cost. Start by aaruming omission (x1). 1
flag := 1;
1f x2 < 3 then
begin
X = x2;
flag := 2
end;
if x3 < x then
bagin
x = x3;
flag := 3
end;
if x4 < x then
begin
X := x4;
flag := 4
end;

aditd(l, 3) := x:
{ If markup return is requested, generate markup at-ing for this char pair. |}

{ When marking an omissicn, use special mark for oniasion of space, which indicates 1
(run together words. }

if (flag = 3) and (n{3} = space) then

runtogetherflag := True;

1f markflag then
case flag of

1:

marks (1, 3] := concat (marks(i -1, j ~ 1), mk);

2;

marks (i, j) := concat(marks(i - 1, J), Sextraltr);
3

if m(j) = space then
marks (L, 3) := concat(marks(i, § - 1], Srunonwd)
elae
merks(i, j] := concat (marks(i, 3 - 1), Smissingltr):
‘-
end; {CASE flag OF}

end; { FOR § DO}

dr (baae_char(r(i])]] := 1;

end; { FOR 1 DO}

{ Minimum welghted, unnormslized edit distance ia now in lower right entry of editd matrix.

rmarks (L, §) := concat (marks{il -1, j1 - 1), Stransltrl, dup_char(‘'*‘, { ~ 11 - 1), Stransltr2}:

}

{ This number includes weights due to accent and case errors. Save it in global var edit_dist. |}

edit_dist := editd(rl, ml];

{ Gat & return normalized edit distance, nedit_dist, by dividing maximum total cost of converting |

{ a atring of length rl to one of length ml. |}

nedit_dist := edit dist / (maxEditWeight * miniml, rl) + wdelete * (max(ml, rl) - miniml, rl)));

{ Return merkup string. Will be null if none was generated in lcop above. }

if rawTrace = 'r’ then

markup := marks(rl, ml} { Return raw edit markup. |}
eise
markup := spellmarks(marks(rl, mlj, m, ©): { Return “pretty® markup suitable for display. |}

end:; { nedit_dist }

{

{ Top-lavel control to generate a least-cost edit trace or. the strings MODEL and RESPONSE.
{ Form of trace (raw or pretty) is controlled by global var RAWTRACE values 'r’ or ‘pt. |}

b

Edit_trace}

}

Page 19

¥

Aruitoxt provided by Eic:

{
{
{

{

{

{

Page 20

Edit trace atring is put into direct HyperCard XFCN return. Indirect return is put {nto)
the HyperCard global var HEMARKUPRETURNVALUES: two comma scpareted items, |}
the first the raw e 't distence, and the second the normelired edit distance. |

procedure edit_trece (model, response: str255);

ver

ned: REAL;

c: CHAR;
sl, 82: atr255;
ma, rs, marks: wordstr:

begin
1f (length(model} > lmax) | (length{response) > lmax) then
FAIL(*SInput string length exceeds max word length.')
else
begin

c o=t 0,

ms := copy{model, 1, 25);

rs := copy(response, 1, 25);
init_spelling(markse”);

{ Return markup string in MARKS and welghted unnommellzed edit dist in EDIT_RIST.)
ned := nedit_dist {ry, ms, merks, merksP”, True, False):

{ Convert so markup string las direct return; NEDIT_DIST and EDITDIST are returned in |}
{ THEMARKUPRETURNVALUES. |}
extToStr{peranPtr, ned, sl):’
numToStr (paramPtr, edit_dist, s2);
sl :~ concat(sl, c, 82):
paramPtr®,ReturnVelue := pasToZero(paramPtr, marks):
setGlobal {paramPtr, ‘theMarkUpReturnValues', pasToZero (paramPtr, sl}}):
end;
end; { edit_trace }

WORD QRDER ANALYSIS }

Fill_editd matrix }

Get least edit dlatance between each pair of words (M, R) where M is taken from t
the correct answer and R comes from the atudent®s reaponse. The procedure }
takes synonyma into account, so that the synonym M uith minimal edit distance t
from @ glven R i3 used to determine edit distance. }

The normelized edit distance for each peir is computed. If this distance is |
greater than a certain criterion, prop_orrors, then the two words are conaidered }
to be different and an "infinite" distance assigned. If prop_errors is less }
than the criterion, then the actual distance is assigned, scalec "~ > make it an 1
integer between 1 and editWeightScale. }

procedure fill editd _matrix (var mw, rw: inputwsvector: var mwseq: inputwivector: var sim: wlmatrix; var simseq: wimatrix):

var

m, mp, r, p: INTEGER:
d: LONGINT:

ned: REAL:
spellmarks: wordstr;

begin

Create a list (set) of response words which exactly match igucrable model words.)
rignore := [];
for m := 1 to mwk do
if m in mignore then
for r := 1 to rlg do
begin
sim(r, mwvseqim)} :~ infinity:
if nw(m] =~ rw(r) then
rignore := rignore + (rl
end;

Look et each resaponse word in turn.)
for r := 1 to rlqg do

If the response word is ignorable word, it cannot match eny model position. |
if r in rignore then

for mp := 1 to mwk do { Exclude ell model positions. }
sim(r, mp) := infinity
else
for m := 1 to mwk do
begin

Using m as an index for POSITION, {nitlialize distance between each response }
word and model position to the default of "infinity". Since mlg will always |
excead the number of positions, this will initialize all positions, and some }
cells beyond that. }

BEST COPY AVAILABLE bO

Page 21

sim{r, m] :» infinity;
simseq(r, m] := -1;

{ Gat the adit distsnce between the currsnt response snd model words. Tha }
{ spellmarks sre not sctually returned here, but a psrameter is required st thst }
{ position. }

ned := nedit_dist{rw[r), mw(m], spellmarks, msrksP*, False, shortcut);

[If the normslized edit distsnce exceeds s criterion vslue, then round }
{ it to infinity; otherwise, convert it to an integer betwsen 1 and editWelghtScsle. Shortcut i
{ nsy be used -- words differing too much in length sssigned infinite distance. 1

if ned <= prop_errors then

d := Trunc (editWelghtScsle * nad)

d := infinity:

{ Get the position in the model which the current model word corresponds to. }

{ (several synonyms msy share the same position, but note that p will always be }

{ less than m, hence a cell referenced by p will alresdy hsve been initialized. }
p i= mwseq(m);

{ If response word is like ignorable model axcept for cap and accent errors, then }
{ ignore it and make it unmatchable with every model position. MP is model position index. |}

if (m in mignore) then

if (edit _dist < winsert) then

begin

rignore := rignore + [r):

for mp := 1 to mwk do

aim(r, mp) := infinity:

end

else

{ If R isn't close to ignorable M, leave distance infinite. |}

Otherwise, Lf the current distance is smaller than what is already entered in this cell, }
then replace the cell contents with the new distance, and keep track of the model }
word numhar used to fill this model position. This means that when there are several }
synonvas occupying a singla position in the pattern, that the model word ultimately }
used will always be the ona which is closest to the response word, and the distance }
entered in the cell will always be the minimum possible for the given synonym }
1ist. This 1is essential for proper hsndling of synonyms. The actual model word]
matched must be remembered so that an sppropriate spelling markup can be }

cenerated later. }
else if d < sim(r, p] then
begln

sim{r, p| = o
simseq(r, p} := m;
end;

end; (FOR m := 1 TO mwk: ELSE; FOR r := 1 TO rlg }
{ The matrix has the dimensions rlg X plg. Initializations of other cells are boqus.)
if traca then
see_nedit_matrix('End of FILL_EDITD_MATRIX');

end; { fill_ editd_matrix }

{ List_possible matches |

{ Generate a list of possibla lutchol; in set format, for each response word }
{ position. } .

procedure list_possible_matchas:

var
r, m: INTEGER:

begir
reatched = [];
mratched := [];
rmaybe := {];
mmaybe := [}];
for r := 1 to rlqg do
begin
cholces(r] := []:
runtogether(r] := =-1;
for m := 1 to plg do
if s(r, m] < infinity then
begin
cholces(r] := cholces(r] + [m];
rmsybe := rmaybe + [r]:
mmaybe := mmaybe + [m];
if afr, m] = 0 then
bagin
mmatched := mmatched + (m]:
rmatched := rmatched + (rl:
end;
end;
end;
if trace then
begin
showset (' rmatched’, rmatched):
showset (*mmatched®', mmatched):

Aruitoxt provided by Eic:

ERIC

Aruitoxt provided by Eic:

P e e

showset (‘rignore’, rignore);
showset (‘mignore', mignore);
for r := 1 to rlg do
showset (concat (*cholces R= ', NtoS(r)), cholcesir]):
and;
end; { list_possible_matches |}

Find_runtogether |}

This procedure called after the initial pass at spell matching has been done. }
For each unmatched word in r, all adjacent UNMATCHED palrs of positions, m, mn, }
in the model are examined in turn to see Lf r matches the concatenation of n }
with mm (possibly allowing for some misspelling). This means that run~together)
words are identified as such only if they sppear in the exact order specified }
by the model. When forming the pairs m, mm, the following complications }

must be taken into account: }

1. Ignorable words in the model must bhe left out of considaration when }
determining adjacency, so that m and mm will be considered adjacent if }

separated by nothing but ignorable words. E.g., 4n & < b c > d, a and d are }
adjacent. })

2. Synonym lists must recelve speclal treatment. Suppose two adjacent }
synonym lists (ab | (de f]|, with each of thea unmatched (l.e., nor }

has matched any synonym at eithar position). Then r must be compared to svery }
menber of the csrteslan product of the two lists: ad, ae, af, bd, be, bf. }
Likewise, for a (b c d }, r must be compaired to ab, ac, and ad. }

procedure find_runtogether;

var
r, m, fam, xm, xmm, p, pp: INTEGER;
unmatchedm, unmatchedr: wordset;

label
1:

N.

_———— e~

Next_position |}

Seach through 1list of model words and return index of first word right of 'start’)
which (a) is not an ignorable word, and (b) is not a synonym of the word at }

'start®. If the word found is part of a synonym list, it will always be the first }
menber of that list. If no word of this sort can be found beyond 'start’, return 0. }

function next_position {startingmw: INTEGER): INTEGER;

var
i, lastp: INTEGER;

begin
next_position := -1;
if startingmw = ~! then
EXIT (next_position);
lastp := mwseq{startingmw];
for L := Succ(startingmw) to mwk do
1f (mwseq(l] <> lastp) and {mwseq(i]} in unmatchedm) then
begin
next_position := 1i;
EXIT (next_position);
end;
end: (next_position }

o~ o -

Try_to_split_rw |}

Conpare response word r to the run-together string consisting of model words }

m and mm. If spelling analysis ylelds an edit distance of less than split_criterion,)
then (a) match r with the word at mm; (b) mark the ®"run cn”® portion of r which }
corresponds to the word at mm as ignorable, so that it will not be marked up }

as a missing word; (c) remove both p and pp from the list of unmatched positions }

30 that they will not be matched to some other r; (d) add p to the list of cholces }
avallable to assigning to r during the order analysis. No markup and no short- }

cut used when computing edit distsnce. }

function try_to_split_rw: BOOLEAN:

var
d: REAL:
dupny, runtogetherword: wordstr;

begin
try_to_split_rw := False:
runtogetherword := concat (mw(xm], space, nmw(xmm]):
d := nedit_dist(rw(r], runtogetherword, dummy, marksP”, False, False);
1f runtogetherflag and ((edit_dist = wdelete) or (d <= runon_criterion)) then
begin
try_to_split_rw := True;
a(r, p] := Trunc(editWeightScale * d);
aseq(r, p] := xm;
runtogether{r| := xmm:
cholces{r] := cholces(r] + [p];
nignore := mignore ¢+ (ppl;

6 ¢ BEST COPY AVAILABLE

Page 22

Page 23

unastchedm := unmatchedm - [p, ppl:
unmatchedy := unmatchedr - (r]:
end;

end; [try to_split_rw |

bagin { find_runtogether |

{ Get set of unmatched m positions (not matched snd not lgnorable). Also set of }
{ unmatched r words. }

unmatchedm := (1.,plg} - mmaybe - mignore:

unmatchedr := (1..rlg) -~ rmasybe -~ rignore;

if trace then
bagin
showset (*unratchedm :*, unmatchednm);
showset (‘unmatchedr :*, unmatchedr):
end?

for r := 1 to rlg do
begin

runtogether(r} := 0;

if r in unmatchedr then

begin
Gat pairs of adjacent modal positions, p, pp. In determining adjacency,]
ignorable words are neglected, and a synonym list counts as one position. }

If the next position is a single word, then ‘next_position' returns the indax }
number of that word; if it is a synonym list, then it returns the index number }
of the first word in that list. When there are no further such pairs, either }
m or mm will be returned as 0. }
m := next_position(0}:
mm := next_positioni{m):
if sm = -1 then
EXIT(find_runtogether);
while mm <> -1 do
begin
{ Get the position numbers of the words. }
p i~ museq(m]:
pp :~ mwseqlmmj;
{ Verify that both positions are still unmatched. If not, they cannot be }
t matched against tho possibly run-together r, and wa must move on to the next }
palr of m, mm.]
if (p., ppl <= unma chedm then
This double loop takes vare of cases whera elther m or mm, or both, head s }
synonym list. In this tase, r must be tast d agsinst all combinations of words }
w, ww, whare w la drawn from the synonym list headed by m, and ww is drawn from }
from the list headed by mm. In the common case where neithar m nor mn heads a }
synocym list, each loop executas once only. The loops operate by starting at }
m (mm) and advancing rightword one word at s time to the end of the synonym list, }
signaled when the position number assoclated with the current word changes. }
begin
xm = m;
wvhile p = mwseq(an]) do
begin
mu = M
while pp = mwasaq(xmm] do
begin
{ Mere rw(r) ia tested for a match with the run-together string mw(xm } + mw({ xmm] . }
{ If the match succeeds, then exits the m, mm lcops snd start work on the next t. }
if try_to_split_rw then
goto 1;
Inc {nmm) ;
and:?
Inc{xm):
and;
end; { IF [p, pp | <= unmatchedn |
{ Move right to next palr of adjacent model positions. }
m := next_position (m);
mm := next_positionim);
end: (WHILE (m > 0) AND (mm > 0) }
end; { IF r IN unnatchedr |

— e e e

— e

end; { FOR r := 1 TO rig DO }

1 Update list of matched response words asnd model positions. }
msatched := (l..plg] - mignorea - unmatchedm;
rmatched := (l..rlg} - rignore - unmatchedr:

end: (find_runtogether }

{ Search_seq }

Core procedure of the order analysis; actually produces an optimal matching of }
model and response words. Optimal means that the match .eturned is at least as |
good as any other match which could be generated. If A and B are two matchings. |}
A is defined to ba better than B if (1) A has less inversions than B, or, If |}

A and P have the same number of inversions, (11) the final inversion is as }

far to the right as possible., Consider this example, whare a, b, c ... symbolize |}
full words:)

{ Model word: a b c a b c }

Q Lo
ERIC

Aruitoxt provided by Eic:

Page 24

{ Position number: 1 2 3 4 5 3 }
{ Reaponse word: b c a b ¢ a }
{ Position number: 1 2 3 4 5 [}

{ For each response word, several model words, at different positions in the}
{ model, may match:}

Response position: 1 2 3 4« 5 4 }

Matching models words: 2 2 4 2 3 4 }

{ A matching is genereted by choosing one of the numbers (i.e., model words) 1}
{ in each column, subject to the restriction that no nunber be chosen twice. |}
{ Possible matchings ara indicated in the table balow. Of course, a model and }
{
{

response word can only be metched if they are sufficiently similar {ideelly, }

identical).}
{ Response word poszition: 1 z 3 4 5 3 }
{ }
{ One possible matching: 2 3 4 5 6 1 }
{ A second metching: 5 6 1 2 k] 4 }
{ A third matching: 2 [1 5 3 4 }
{

}

{ An inversion occurs whenever two successive numbers invert their natural order: e.g.,}
{ the first matching has one inversion, at 6 - 1. The third has two: at}
{ §~1and at 5 - 3.}

The algorithm generates all possible matchings in a depth-first nanner, }

moving forward in the sequence of response-word positions by recursive }

descent, counting the number of inversions along the path as it goes, and |}
keeping crack of the position of the rightmost inversion. When a matching is |}
complete, the algorithm checks to see if it is at least as good as the matchea |}
generated so far and, if so, saves it in a list of solutions. }

In the worst case, where there were N response words and N model words, all |}
identical, there would be N candidata words to fill each response position, }

and hence N! paths to check, leading to a near-exponential algorithm. 1In fact, }
the algorithm turns out to be fairly efficient, for several reasons: }

{ 1. In actuality, even for fairly pathological cases such as cyclic and near- |}
{ cyclic patterns, there are ralatively few choices for matching at each response }
{ position.}

2. The algorithm does oxtensive tree pruning. As soon as it becomes clear that }
a path cannot be optimal (because the number of inversions has exceedad the)
minimum so far found), work is immediately terminated on that path and all }
subpaths. This drastically reduces the search space. In practice, it appears |}
that search time is roughly quadratic. }

Input paraneters: }

remaining_choices }
A list (in set format) of all the model words which have }
not yat been matched, and thus are still available for }
ratching. }

solution A record containing a description of this matching as so }
far developed, including sequence cf model word numbers, }
inversion count, and position of rightmost invarsion. }

lastchosen Position of last model word chosen. When no model word }
natches a response, an arbitrary value of '0' is assignad }
to tha solution sequence, but 'lastchosen' retains its }
prior velue in this case, 30 that the inversion count will}
not be made against “extra® words.}

P Response word positiocn at which matching should take place.}

{ {Global) data structures affected:}

{solutionlist A list of optimal solutions. each solution is a record}

{ containing the actual matching (the sequence into which}

{ the model words must be rearranged to match the responsa),}

{ the nunber of inversions, and the position of the rightmost inversion.}
{solutionk Nunber of records on the solution list (starts with #1).}

procedura search_sequences (remaining choices: wordset; solution: solutionrec: lastchosen: BYTE: p: INTEGER):

var

chosen: wrange;

xsol: solutionrec:
available_choices: wordset:
1: INTEGER; '

{mmmreecmccm e —— ~-Choose_next |}

{ Chooses the first (leftmost) of a list of words whose positions are represented }
{ in set format. |}

function chovse_next {wsot: wordset): wrange:

var
i: INTEGER:

BEST COPY AVAILABLE
ERIC by

Aruitoxt provided by Eic:

Page 25

begin
1 = 0;
repeat
Inc{l)
until (1 in wset};
choose_next := 1
end; { choose_text |}

{ Save_solution |}
{ Pushes a solution onto the solution list (e steck). }
procedure seve_solution (sol: solutionrec);
begin
if solutionk < wmax then
Inc fsolutionk) ;
solutionlist{solutionk] := sol
end:
[——mem e e e e Trace_solution |}

procedure trecesolution:

var
i: INTEGER:

begin
(Write(*' : 2 * p)i}
{for 1 := 1 to Length(solution.seq; do}

{Write(Ord (solution.seq(l}) : 2);1}
{Write(* invk=‘, solution.inversionk : 2, ' firstinv=', solutlon.firstinv : 2, ''p=', p: 2):}
{Writeln:}

end: (trecesolution |

{)
begin { search_sequences |}

i1f trace then
beglin
tracesolution;
pauss;

end;

This 1s the terminaztion clause. If we have run cut of response words to }
metch, this peth 1s complete. Check the cost (number of inversions } in this 1
matching, and 4f it is more efficlient than those currently on the stack, 1

then cleer the stack and start it over with this solution; otherwise, }
simply add the solutlon to those zlready present and exlt, returning to earlier |}
recurslons. }

Inc(recursionk);
if {(p > rlg) then
begin
1f (solutlon.inversionk < mincost} or ({solution.inversionk = mincost) and (solutlon.firatinv > rightmost)) then
begin
mincost := solution.inversionk:
rightmost := solution.firstinv:
solutionk := 0;
save_solution(solution):
end;
EXIT (seerch_sequences):
end;

Otharwise, we are still generating a path by recursion. Make a working copy }
of the solution, so that the partiel solution state will be preserved upon }
return. Find out what matching cholces ure avellable for this response word }
by restricting the cholces at this position to those not used at previous 1
positions. If no choices are avallable, match this respose word to the dumny)]
wodel word # 0 (this means treating the response word at this position as an }
extra word), and recurse to match the next position rightwerd. }
xsol := solution:
avellable_cholces := (remeining_cholces * cholices(pl}:
1f evalleble_choicee = (] then
begin
xsol.seq := concet {solution. seq, Chr(0));
search_sequences{. meining choices, xsol, lastchosen, p + 1}:
and
else
If one or more words ere avallable for metch, choose eech of them in turn 1
{this 1s done iteratively using the WHILE loop). Use this cholce to extend the }
metching, updating the word seguence, the number of inversicns, and the position)
of the rightmost inversion. Notice that “availeble_choices', which records the }
cholces not yet tried at this loop will shrink eech time though the loop, while 1
'remnininq_choicol', which records words not yet entered into the match, will }

stay unchanged. 1
while evalleble choices <> {} do
begin

xsol := solutlon;
chosen := choose_next (avallable choices):

O

ERIC

s

Page 26

available_choices := available choices - {chosen);
xsol.seq := concat(ao.ution.seq, Chr(chosen});
if chosen < lastchoaen then
begin “
Inc(xsol.inversionk);
if xsol.firstinv = 0 then
xsol.firstinv := p;
end;
{ If the matching aa so far developed is as good or bhetter than any solutien}
{so far found, then continue this matching by recursive descent to the next}
{response word position. Otherwise, abandon this metching, and do not try to)
{extend any matchea from this point in the search tree (tzee pruning)., Simply}
{continue the loop, chooaing another matching possibility at this position,}
{if any remain. Note that before it i3 passed to the next level, the set of}
{*remaining_choices' must have the current choice removed.}
{N.B. - Still greater pruning effiziency could be obtained by retaining a}
{solution only as long as it resained strictly hetter than the current solutions}
{{ inversionk < mincost). This 1s not done here so that the secondary criterion}
{of rightmost final inversiont position can be applied. |
it (xsol.inversionk < mincost) or ((xsol.inverrionk = mincost) and (xsol.firstinv > rightmost}) then
search_sequences (remaining_choices - (chosen], xsol, chosen, p + 1))
end; { WHILE }

{ If all the possibilitiea at this position have been used, return to the}
{previous level of recursion and work on further possibilities there, generating)
{new branches in the search tree. }

end: | search_sequences }

{ Adjust_solution |}

{ The strictly left-to-right recursion of the matching algorithm unfortunately |
{ leads to situstions like this one: |}

{ Model : the time }

{ Response: tima then the }

{ Markup genaratad: - < x AXX }
{ More intuitive merkup: * XXXX < }

This comes about becausa the matching algorithm doas not considar variacions in }
edit distance when matching worda -- it only knows that a pair ia or 13 not a }
peraissible match. Hence a misspelled word is just as good a candidate as |}

a perfect match. When several responsa words match a given model word, the |}
leftmost i3 always selected in preference to the ‘redundant* rightward versions, |}
aven if the rightward versions are better spelled, and hance intuitively better |
matches. E.g., in the response above, ‘'then' {3 always sclected to match ‘'the')
in the model, leading to a countar-intuitive msrkup.}

This procedure scans the solution, looking for cases where a rightward word |
would consititute a better fit than the current assignment, and adjusts the |
solution accordingly, producing, e.g., the improved, ‘intulitive' markup shown |}
sbove. Inversion count may ba affected in cases lika this: |}

{ Model: the tine }

{ Response: then time the }

{ Markup: x XXX }

{ “Improved' markup: XXXX~ < }

{ and it is not clear that this reslly reprasents an improvement. Hence, the)

{ inversion count of each adjusted solution is checked, and if the number of }
{ inversions is increased, the proposed adjustment {s not accepted. |}

procedure adjust_solution (vsr sol: solutionrec):

var

r, i, m, mi, ulim, llim, invComp: INTEGER:
dll, d12, d21, 422, edl, ed2: LONGINT:
rsave: CHAR:

s: str80;

strgl, strg2, strg: str2S5:

validwords: wordset:

e So——— m—mme—ee-CompInvCount |}

Compares the number of inversions in an old solution and a new solution, and |}
returns -1 if the new solution has strictly less inversions than the old one, }
0 if the number of inversion is the same, or 1 Lif the new solution hss more |}
The old solution is specified in the input paramenters by a ptr into the |}
sequence fleld of a solution record, typecast into a byte erray. The proposed |
new solution is specified as e possibla inversion, where the M belonging to r |
is to be exchenged with the M belonging to ri. }

function ccemplinvCount (s: str80: r, ri: INTEGER): INTEGER:

var
xs: str80;
i, k, xk, c, lasti, lastxi: INTEGER:

begin
{ Bulld a sequence list for the proposed new solution. |
xs = a;

ERC o BEST COPY AVAILABLE

Aruitoxt provided by Eic

Page 27

xs(r) := s(ril;
xs(ri] = s(rl;
{ Initialize inversions counters and bookkeeping for counting loop. 1}
k := O
xk := 0;
lastl := 0;
lastxl := O;
{ Count invesions in both the old end the proposed new solution in parallel.)
for { := 1 to rlg do
begin
c := Ordixs(1]);
1f (c <> 0) then
begin
1f (c < lastxi) then
Inc(xk) ;
lastxi := c;
end;
c := Ord{s(i}):
if (c <> 0} then
begin
if (c < laati) then
Incik):
lastl := c;
end:
end;
{ Return boolean which tells whethar the proposed solution is at least as good |}
{ 1n terms of number of inversions. }
1f (xk < k) then

complnvCount := -1 {nex sol has less inversions}

else If (xk = k) then

conpInvCount := 0 {new & old have same number of inversions!
else

complnvCount := 1; {old sol has }less inversions}

end; { complnvCount }

begin { adjust_solution |

{ Bulld a list, in set format, of all unmatched response positions. |}
3 := sol.seq:
validwords := [l..rlg] - rignore:

Look in turn at each valld response word R, and the model word it is matched }
to, M. Look for another valld response word say R' matched to M' such that exchanging the |}
metch, so that R 13 matched to M' and R' 13 matched to M would imjrove tie overall solution, |}
(becavse it elither (a) causes no more inversions and improvas total edit distance for sentence) OR, |}
(b) causes less inversions, and does not increase total edit dls' ance. Whenever such R, R' can be found, 1}
then exchange the match 30 R goes with M' and R' goes with M. }
for r := 1 to rlg do
1f (r in validwords) then
for rl := 1 to rlg do

1f (ri 1n validworas) then

begin

m := Ord(s(r});

mi := Ord(s(ri}):

if m = 0 then

bagin

dll := infinity;

d21 := infinity:

end

el se

begin

dll := alr, m];

d2l := a(ri, m}:;

end;

if m1 = 0 then

bagin

dl2 := infilnity;

d22 := infinicy;

end

else

bagin

dl2 := a(r, nri};

d22 := a(ri, mij;

end;

edl := dll + d22;

ed2 := dl12 + d21;

invComp := complnvCount({s, r, ri);

i1f (led2 < edl) & (invComp <~ 0)) { ((ed2 = edl) & (invComp < 0)) then

begin { Exchange assignments 3o R <-> M' and R' <-> M, |}

rsave := s(ri);

s(ri} := s(ris

s(r} :~ rsave;

end

end;
30l .%eq = s;

end; { adjust_solution }

-7

O

ERIC

Aruitoxt provided by Eic:

ERIC

Aruitoxt provided by Eic:

~—=Find_best_order

Hes overall control of the order analysis. Accepts s matrix of (normslized) }
edit distances ss input, snd returns e single optimal matching as e solution, }
in the form of e mapping of model to respcnse words. The mapping is repressnted |}
in the vectors r_to_n snd (with index varieble inverted) m_to_r. }

procedure find_best_order:

var

1: INTEGERs
totDiat: LONGINT:
r, ®, p: 0..wmax;
sol: solutionrec:
rightmost: INTEGER:
s: atr80;

begin

Initislize varisbles used by order matching algorithm, and call the algorithm }
st top level of recursion. Set of positions initislly avsilsble consists of all }
positions in the model. }

aol.seq := °*!;

sol.inversionk := 0;

sol.firstinv := 0;

mincost := infinity;

rightmost := 0;

solutionk := O;

solutions_tried := 0;

recuraionk := 0;

sesrch_sequences ((l..plg}, sol, O, 1);

Adjust solution to improve match with respect to spelling accuracy. |
if adjust_needed then
edjust_solution (solutionlist(1}):

Build a maspping of response~-to-model and model~to-raesponse words. These |}
will be used to generate the sentence markup. Unmetched words are assigned to |}
dunmy word #0. }
s := solutionlist(l).seq;
matchedk := 0;
avedist := 0.0;
totDist := 0O;
mmatched := (}:
rrmstched = ();
for 1 := 1 to wmax do
begin
n_to_r(i}
r_to_n(i)
end;
for r := 1 to rlg do
begin
n = Ord(s(r]}:
r_to m(r] = n;
ifm > 0 then
begin
matched := rmatched + (r}:
mmatched := mmatched + (m]:
m_to_r(m} := r;
totDiat := totDist + a(r, mj; { totsl scaled normalized edit diat)
Inc (mstchedk);
and;
end;
1f matchedk > 0 then
avedist := totDist / (LONGINT (editWeightScele) * LONGINT (matchedk)):

i

=0
=0

Conpute proportion of nstched words and proportion of non~inversions. These |
velues sre used to decide whether e response should be judged ss e match (ok) |
or a non-match (no) to the model pattern. }

1 := card{[l..rlg} =- rignore) + cerd{(l..plg} -~ mignore):

1f 1 > 0 then

pratched := {2 * matchedk) / LONGINT (1)

else

peatched := 1;

1f matchedk > 0 then

pnoninversions := 1 - {solutionlist(l].inversionk / matchedk)

else

pnoninversions := 1;

end; { find_best_order |}

[Word_markup |}

Generate proper merkup for each word in sentence. Order markup symbols }

{missing word, extra word, displaced word) sre generated here. If a }

misspelled word is slso out of order, a (non-blasnk) order msrk preempts any spelling
mark which might be on the first character of the word. }

(Global) Return vars:)
wordmerk : vector of response word markups, spelling and order markup combined.

P

(J

}

)

Page 28

O

ERIC

Aruitoxt provided by Eic:

{

(
{

procedure word _markup;

var

r, m, p, lastfound: INTEGER/
c: string(l]:

d: REAL;

s, mword: wordstr;
notmissing: wordset:;

begin
Get the set of model positions which will NOT cause a missing word word markup }
if absent et the expected place in the response. If anyorderok is false, }
this will consist of ignorable words. If anyorderok is true, it will be }
ignorable words plus those which appeer somewhere in the sentence (l.e., are i
actually matched), but are out of order. }
if anyorderok then
notmissing := mignore + mmatched
else
notmissing := mignore;
lastfound := 0;
for r := 1 to rlg do
For eech word in the response, retriave the matched position, m, in the model, }
and the corresponding word, p (L1f there were synonym lists in the model, then }
probably m <> p. }
begin
m := r_to m(r];
p := aseq(r, m];
I1f nothing matched to response word, and it is not en ignorable word, }
and extra words are not permitted, then generate extra word markup. }
if r in rignore thean
wordmark([r] := *°*
elsea 1f m = 0 then
if extrawordsok then
wordmerk([r] := *°*
else
wordmerk(r] := dup_char (extrawd, Length (rw(r]})
Otherwise, generate spelling markup. }
else
begin
If current word 13 e runtogether, restore space before generating spellmarks. |}
if Tuntogether(r] > O then
aword := concat (mw(pl}, space, mw(runtogether(r]})
else
mword := mw(p]:
If misspelling i3 OX, make spelling markup blank, else generate it. |
if misspellOX then
3 := dup_char{nomark, length(mword})
else { Return full markup in s. }
d := nedit_dist (rw(r], mword, s, marksP®, True, False):
If the model position just matched skips ahead (right) of the last model]
position by more than 1, then -~ unless every model word in between the two 1
positions 1is an ignorable word or unmarkable becauss it 1s merely out of order }
and order 1is not being marked ~- some model words were left out at this point }
in the response, 30 generate a nissing word markup to go just before this }
response word. }
if (m > lestfound + 1) and not ((lestfound + 1..m = 1) <= notmissing) then
c := missingwd
else
C = Cl'-
1f the model position matched appears in the model at a position to the left }
of the last model position matchaed, then the response ordering inverts the model }
ordering at this point. Mark the matched response word as needing to be moved }
leftvyerd. Do not do this, however, 1f anyorderok is in effect. Preempt the }
first cheracter of the spelling markup to show the moveword symbol, unless it's a space.
1f ‘m < lastfound) then
1f (not anyorderok) & {movewd <> nomark) then
wordmark(r] := concat(c, movewd, Copy(s, 2, Length{s) - 1)}
else
wordmark(r) := concatic, s}
else
begin
wordmerk(r} := concat(c, s);
lastfound := m

end;
end;
end; { FOR }
If final model position matched was not the rightmost position of model, }
then some model words were left cut at the end the response; mark missing -}
words at end of response. }
1f not ((lastfound + l..plg] <= mignore) then
wordmark(rlg + 1) := missingwd
else
wordmark(rlg + 1] := ¢¢;
end; |{ word markup }

Merk_sentence |}
Prepare a markup string which can be displayed beneath words of student's response. }

Task of this routine i3 to make sure each markup will be positioned baneath appropriate
word and letters. |}

o«(' }

}

Page 29

{ Input vers: }
{ wordmark : (Global) vector of markup strings, one for each response word }

function mark_sentence: string:
var

r, p: INTEGER;

®, outstr: string:

begin

{ Flrst char of markup should plot in position preceeding first char of response
{ to provide place for e leading carat when initial words ere missing. }

{ 2 extra chars to provide for leading and tralling carats. |}
outstr := dup_char(nomark, 2 + length(response}):
for r := 1 to rlg + 1 do
{ 1Ignorable word chars are appended to preceding real word as if punctuation. |}
if not (r in rignore) then
begin
m := wordmark(r}.
{ Move ahead 1 char if no missing wd mack {remember extra char at front) }
if (m(l) = missingwd) then
p :* rwxloc(r]}
else
P = rwxloc(r] + 1;
{ Replace blanks et word location with markup string for the word. |
delete{outstr, p, length{m));
insert (m, outstr, p):
end;
mark_sentence := ocutstr’

end; { mark_sentence }

{ CheckOrder }

{ Top-level sentence chacking procedure which executes tha major sub~procedures
{ needed to create the sentence markup. }

procedure checkorder:

var
i: INTEGER:

begin

{ Initialize borders of spelling edit distance matrix -- this is never }
{ cleared, 8o could be dore in markup XFCN {nitialization if matrix were static.
init_spelling (marksP*);

{ Build matrix of normalized edit distances batween all (M, R) word pairs.)
fill editd matrix(mw, rw, mwseq, a, aseq):

{ Build sets that record which model and response words have matches. For each
{ r word, bulld cholices{ r }, a set of all possible matches for r. 1
list_possible matches:

{ Try to extend matching by looking for run-together words among those sz0 fa: }
{ unmatched. }

if runtogether_needed and (not anyorderok) then

find_runtogether:

{ Apply exhaustive search algorithm to find a matching which minimizes number }
{ of inversions.)
tind_best_order:

{ Generate strings for order and spelling markup. i
if word_markup_needed then
word_markup;

end: { checkorder }

{ Coripare |}

{ Control structure for {default) full spelling and word order analyais. }
{ Internalizes the two strings 'model* and ‘response' to prepare them for use }

{ in the order checking algorithm, then runs that algorithm. }
{ Output data structure (global): 1
{ wordmark : A vector of merkup strings, 'wordmark’, with one entry }

{ for eech word of the response. }
function compare (model, response: string): string:
begin
judgedok := False:
setmodel (model):

setresponse (rosponse);
chackorder;

=3
i
L

ERIC

Aruitoxt provided by Eic:

}

Page 30

BEST COPY AVAILABLE

Page 31

judgedok := ((pmatched = 1.0) or (extraworc¢sok and {mmatched = ({l..plg] - mignore)))) and ({pnoninversions = 1.0) or anyorderok)

and ((avedist = 0.0) or misspellok):
conpare := mark_sentence:

end; |{ compare |

{ FORMAT OUTPUT TO HYPERCARD |}

{ Re~format the R_TO_M and M_TO_R maps into a string suitable for return }

{ to HyperCard.
{ R_TO_M on line 1, and M _TO R on line 2, of a two-line string. }

function formetMarkupMaps: Str255;

var
1: INTEGER:
a4, t: Str2855;

begin

I L IR
for 1 := 1 to rlg do
begin
numToStr (paranPtr, r_to_m{l], t):
s := Concat(s, t, ',"')
end;
s[length(s)] := chr(l3); { substitute newline for dangling -omma
for 1 := 1 to plg do
begin
nunToStr(paramPtr, m_to_r(i], t);
s := Concat(s, t, ', ")
end;
s(length{s)) := chr(ld); { substitute newline for dangling comna
for 1 := 1 to rlg do
begin
numToStr(paranPtr, rwxloc(l), t):
s := Concat{s, t, ', ')

end;
formatMarkupHaps := omlit (s, length{s), 1): { remove dangling comma
end; { formatMarkupMaps |}

{

The maps are returned as lists of comma-separated Integers,

)

{ Access info requested by PARAMDISPLAYNEEDED and put it into HyperCard global THEMARKUPPARAMDISPLAY. }

procedure formatParamDisplay (switch: CHAR):

var

1: INTEGER:

P, q: phon_varlants:
s: Str255:

c, ch: CHAR;

h: handle:

hp: PTR:

begin

c om0

LI AR

h := NewHandle (0):

appendStringToHandle(h, Concat (‘MUParamDisplay ’, switch, chr(l3))):

case switch of
AN
appendStringToHandle th, ver..onStr):
‘b
for 1 := 1 to 255 do
begin
ch := chr(l);
1f case_info(ch] <> down_case then
appendStringToHandle (h, Concat(s, ch, '=‘, bsse char[ch], *','}}:;
end;
‘d*:
for 1 := 1 to 255 do
1f diacrit_info(chr{i)] <> no_accent then

appendStringToHandle (h, Concat (s, CHR(1), *'=', NtoS{ORD(dilacrit_info(chr(1)])), ¢)):

[P
for 1 := 1 to 255 do
1f case_info[chr {1)] <> down_case then

ERIC

Aruitoxt provided by Eic:

FormstMsrkOpMaps

FormatParamDisplay |}

}

ERIC

Aruitoxt provided by Eic:

Page 32
appendStringToHandle (h, Concat(s, CHR({1), <)):
*h':
for 4 := 1 to 255 do
sppendStringToHandle(h, Concat (s, CHR(i), *=', NtoS(ORD(phon_info[chr (1) 1)), €));
pr:
for 1 := 1 to 255 do
1f chr(l) in delim_chars then
appendstringToHandle(h, Concat(s, CHR(1)));
W'
begin
appendstringToHandle(h, Concat (NtoS(winsert), ¢, NtoS(wdelete), c, NtoS(wchange), ¢, NtoS{wtransposs), c, litoS{wcap), c,
NtoS (waccent), ¢)): ’
appendStringToHandle(h, Concat (EtoS(prop_errors), ¢, EtoS{cutoff), c, Etos(runon_criterion))):

end;

fr:

begin

case ORD(cap_flag) of
1:
s := ‘exact cese':
2:
s := 'authora _caps';
3:

s := ‘ignore_caae’
end: { CASE }
appendStringToHandle(h, Concat (s, c, BtoS{anyOrderOk), c, BtoS(extraWordsOk), c, BtoS(mlisspellOk), c)):
nppendStringToHandleth, Concat (BtoS(word_markup_needed), c, BtoS(runtogether neaded), <, BtoS(adjust_needed), c, BtoS(shortcut),
c)}:
appendStringToHandlet(h, Concat{paramDisplayNeeded, c, rawlTrace, c, BtoS({trace))):
end;
[1
bagin
appendStringToHandle(h, Concat (addcap, dropcap, accentarr, extrawd, misaingwd, movewd, extraltr, missingltr, substituteltr,
transltrl, transltr2, runonwd)):;
end:
'mt:
for p := vowel to phoenS do
for q := vowel to phon5 do
appendstringToHendle (h, concat(s, NtoS(phon_matrix(p, gl), ¢)):
otherwise

FAIL('SInvalid info type. Use: Version, Base, Diacrit, Cap, Punct, pHon, Welghts, Flags, markupSymbols, phon_Mutrix'f;
end; [CASE switch }

[Add null char terminator for HyperCard string]
1 := GetHandleSize(h):
hp := PTR{ORD(h*) + 1 - 1); { Ptr to last byte of block. }
if (1 > 0) & (hp* = ORD(*,*)} then

hp” = Q { Replace tralling comma with null char terminator. |
else

appendsSt ringToHandle(h, CHR(0)): { Append null char terminator }
(Assign handle to global. |}

setGlobal (paramPtr, 'theMarkupParamDisplay®, hj:
disposefandle(h);

end; { formatParamDisplay !

{ TOP-LEVEL CONTROL STRUCTURE FOR MARKUP XFCN. i

{ MarkUp}

{ Top-level controlling procedure which unpacks HyperCard parameter values, }
{ generatea markup and sets up values for return to HyperCard. }

procedurs markUp (paramPtr: XCmaPtr):

const
c = ',

var
h: handle;
p: PTR;

{ s GetStringParam |}
{ Converts the PARMNUM-th XFCN input parameter to a string. }
function getStringParam (parmNum: INTEGER): Str255;

var
8: Str255:

begin

if {paramPtr”.paramCount < parmNum) then
qetStringParam := ‘¢

s

BEST COPY AVA(LABLE

else

begin
7~~0ToPas (peramPtr, peramPtr*.params{parmNum]”, s);
getStringParam := s;

and

end; { getStringParam |

{ : GatCharParam }
{ Converts the PARMNUM-th XFCN input parameter to an integer. }
function getCherParam (parmNum: INTEGER: default: CHAR): CHAR:

var
s: Str255;

begin

if (paramPtr”.paramCount < parmNum) then
getCharPeram := default
else
begin
ZeroToPas (paramPtr, paramPtr”.params{parmNum]*, 3):
1f length(s) < 1 then
getCharPearam := default
else
getCherParam := s{l}:
end

end; (getCharParam }

{ GetBool eanParam }

{ Converts the PARMNUM-th XFCN input parameter to a boolean value. |
{ If the parameter is empty, then DEFAULT is assigned as the value.)

function getBooleanParam (parmNum: INTEGER; default: BOOLEAN) : BOOLEAN:

var
s: Str255;

begin

s := getStringParam{parmNum);
if s = ** then
getBooleanParam := default
alse
begin
getBooleanParam := strToRool (paramPtr, s);
if paramPtr*.result <> noErr then
FAIL (concat ('ABad boolean input param value', 8))
end;

end; { getBooleanParan |}

{ GetCapParar }

{ Converts the PARMNUM-th XFCN input parameter to a cap variant value. |}
{ If the paraneter is enmpty, then DEFAULT is used. |

function getCapParam (paramNum: INTEGER: default: cap_flag_type): cap_flag_type;

var
s: Str255;

begin

s := getStringParam{paremNum);

if s = '' then

getCapParam := default

else if eq(s, 'exact_case') then
getCapParam := axact case

else if eq(s, 'authors_caps') then
getCapParam := authors_caps

else if eqis, 'lgnore_cese') then
getCepParanm := lgnore_case

.;;;L(concat('QBud cap_flag input parsm valus: ', s))
end; { getCapParan |
{ }
begin { markUp)
p := nil; { Cuz FAIL operates on P. }
{ Check input parsmeter syntax. 1
1f (peramPtr“.peramCount = 0) then k ';L
‘5

ERIC

Aruitoxt provided by Eic:

Page 33

Page 34
FAIL{(versionStr):

if (parawPtr*.paramCount < 2} then
FAIL{'SMODEL and RESPONSE parameters required?);

{ Clear debug global. |}
returninGlobal (' theMarkOpDaebug*, **):

{ Get memory from Mac heap. |}
P := WNewPtr (sizeOf (lsmatrix)):
1f p = nil then
FAXL(*%Couldn’'‘'t get matrix memory.')
else
marksP := LSMATRIXPTR(p):

{ Unpack the input perametars and format them as Pascal variables. }
{ Defeult settings are used if no parameter or empty parameter value. }

model := getStringParanm(l);

response := getStringParam(2):

cap_flag := getCapParam(3, exact_case):
extraWordsOK := getBooleanParam(4, FALSE):;
anyOrderOk := getBooleanPsram($S, FALSE);
misspellOK := getBooleanParam($, FALSE);
word_markup_needed := getBooleanPeram(7, TRUE):
runtogether_needed := getBooleanParam(8, TRUE);
edjust_needead := getBRooleanPeram (%, TRUE):
shortCut := getBooleanParam{l0, TRUE):;
markupMapsNeeded := getBooleanParam{il, FALSE}:
pararCisplayNeeded := getCharParam({l2, °x'):;
rawTrace := getCharParam(13, ‘'x*');

trace := getBooleanParam(l4, FALSE);

{ Initializes all static data structures, including the char info tables, punct table, }
(markup symbol table, phon_natrix, welghts and threshold values. 1}
init_markup:

(Format and return markup psrameter display vis global variable ‘theMarkupParamDisplay’. }
if paranDisplayNeeded <> *x' then
formatParamDisplay (paramDisplayNeeded);

{ Do all the markup work here; return the markup symbol string as the value of the XFCN. |}
if rawTrace = 'x* then

{ If requested full (defsult) spelling and word order analysis. }
begin

{ Compute markup string as direct return. |}
paramPtr” .ReturnVelue := PasToZero (paramPtr, compare(model, response)):

{ Format and return judging information via global variable "theMarkUpRaturnValuea®. }
returninGlobal (*theMarkUpiReturnvalues®, concat {BtoS (judgedOk)., c, EtoS{(pMatched), ¢, EtoS(pNonInversions!, c, EtoS{aveDist))}:

{ Forrat and return matching map information via global variable ‘theMarkupMaps' }
1£ markupMapsNeeded then
begin :
h := pasTolero(paramPtr, formatMarkupMaps):
if h = nil then
FAIL (*&Qut of memory while formating markup maps.')

else
begin
setGlobal (paramPtr, ‘theMarkupMaps', h);
di sposHandle (h)
end
end
end
else
(If pure least-edit-trace analysis on input strings was requested, }
{ then generate edit distances and edit trace on raw input strings. }
begin
edit_trece(model, response);
end;

{ Gat rid of dynamic nmemory. |}
disposPtr (p):

{ Don't pess the MARKUP message up HyperCard‘'s inheritance structure. 1
paramPtr”.PassFlag := FALSE:

end; { markUp }
{ }
{ MAIN)
{ .- }
begin { nain |}

markup(paranPtr):

ERIC &
BEST COPY AVAILARLE

Aruitoxt provided by Eic:

ERIC

end;

and.

{ main }

{ unit markupXFCN }

KO

